On some properties of self-dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 44-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of self-dual bent functions. It is proved that the minimal Hamming distance between self-dual bent functions is $2^{n/2}$ and the set of self-dual bent functions is a metrically regular set. The necessary and sufficient conditions for the iterative bent functions $\mathcal{BI}$ (A. Canteaut, P. Charpin, 2003) to be self-dual bent have been found. We have proved that there exists a self-dual bent function in $n$ variables and of any degree $d\in\{2,3,\dots,n/2\}$.
Keywords: Boolean function, bent function, iterative construction of bent functions, self-dual bent, metrically regular set.
@article{PDMA_2018_11_a12,
     author = {A. V. Kutsenko},
     title = {On some properties of self-dual bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {44--46},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a12/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On some properties of self-dual bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 44
EP  - 46
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a12/
LA  - ru
ID  - PDMA_2018_11_a12
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On some properties of self-dual bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 44-46
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a12/
%G ru
%F PDMA_2018_11_a12
A. V. Kutsenko. On some properties of self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 44-46. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a12/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Canteaut A., Charpin P., “Decomposing bent functions”, IEEE Trans. Inf. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl

[3] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Commun., 2011, no. 4, 609–621 | DOI | MR | Zbl

[4] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self dual bent functions”, Int. J. Inform. Coding Theory, 2010, no. 1, 384–399 | DOI | MR | Zbl

[5] Hou X., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63 (2012), 183—198 | DOI | MR | Zbl

[6] Feulner T., Sok L., Solé P., Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68 (2013), 395–406 | DOI | MR | Zbl

[7] Kutsenko A. V., “Spektr rasstoyanii Khemminga mezhdu samodualnymi bent-funktsiyami iz klassa Meiorana–MakFarlanda”, Diskretnyi analiz i issledovanie operatsii, 25:1 (2018), 98–119

[8] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4(6), 5–20

[9] Oblaukhov A. K., “O metricheskom dopolnenii podprostranstv buleva kuba”, Diskretnyi analiz i issledovanie operatsii, 23:3 (2016), 93–106 | DOI | MR | Zbl