Vectorial $2$-to-$1$ functions as subfunctions of APN permutations
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 39-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work concerns the problem of APN permutations existence for even dimensions. We consider the differential properties of $(n-1)$-subfunctions of APN permutations. It is proved that every $(n-1)$-subfunction of an APN permutation can be derived using special symbol sequences. These results allow us to propose an algorithm for constructing APN permutations through $2$-to-$1$ functions and corresponding coordinate Boolean functions. A lower bound for the number of such Boolean functions is obtained.
Keywords: vectorial Boolean function, APN function, bijective function, $2$-to-$1$ function
Mots-clés : permutation.
@article{PDMA_2018_11_a10,
     author = {V. A. Idrisova},
     title = {Vectorial $2$-to-$1$ functions as subfunctions of {APN} permutations},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {39--41},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a10/}
}
TY  - JOUR
AU  - V. A. Idrisova
TI  - Vectorial $2$-to-$1$ functions as subfunctions of APN permutations
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 39
EP  - 41
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a10/
LA  - ru
ID  - PDMA_2018_11_a10
ER  - 
%0 Journal Article
%A V. A. Idrisova
%T Vectorial $2$-to-$1$ functions as subfunctions of APN permutations
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 39-41
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a10/
%G ru
%F PDMA_2018_11_a10
V. A. Idrisova. Vectorial $2$-to-$1$ functions as subfunctions of APN permutations. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 39-41. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a10/

[1] Nyberg K., “Differentily uniform mappings for cryptography”, Eurocrypt 1993, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | DOI | MR

[3] Blondeau C., Nyberg K., “Perfect nonlinear functions and cryptography”, Fields and Their Appl., 32 (2015), 120–147 | DOI | MR | Zbl

[4] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3(5), 14–20

[5] Pott A., “Almost perfect and planar functions”, Des. Codes Cryptography, 78:1 (2016), 141–195 | DOI | MR | Zbl

[6] Carlet C., “Open questions on nonlinearity and on APN functions”, LNCS, 9061, 2015, 83–107 | MR | Zbl

[7] McQuistan M. T., Wolfe A. J., Browning K. A., Dillon J. F., “An APN permutation in dimension six”, Finite fields: theory and applications, Contemp. Math., 518, Amer. Math. Soc., 2010, 33–42 | DOI | MR | Zbl

[8] Idrisova V. A., “On an algorithm generating 2-to-1 APN functions and its applications to ‘the big APN problem’ ”, Cryptography and Communications, 2018, 19 pp., Published online | DOI

[9] Idrisova V. A., “O postroenii APN-funktsii spetsialnogo vida i ikh svyazi s vzaimno odnoznachnymi APN-funktsiyami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 36–38