On maximal metrically regular sets
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 23-24
Cet article a éte moissonné depuis la source Math-Net.Ru
Metrically regular subsets of the Boolean cube are studied. It is proved that the metrically regular sets of maximal cardinality have covering radius 1 and are the complements of minimal covering codes of radius 1. A lower bound of the sum of cardinalities of two metrically regular sets, each being the metric complement of the other, is obtained. We conjecture that any minimal covering code is a metrically regular set.
Keywords:
metrically regular set, metric complement, minimal covering code.
@article{PDMA_2017_10_a7,
author = {A. K. Oblaukhov},
title = {On maximal metrically regular sets},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {23--24},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a7/}
}
A. K. Oblaukhov. On maximal metrically regular sets. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 23-24. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a7/
[1] Oblaukhov A. K., “O metricheskom dopolnenii podprostranstv buleva kuba”, Diskretnyi analiz i issledovanie operatsii, 23:3 (2016), 93–106 | MR | Zbl
[2] Tokareva N., “Duality between bent functions and affine functions”, Discr. Math., 312:3 (2012), 666–670 | DOI | MR | Zbl
[3] Cohen G. et al., Covering Codes, North-Holland Mathematical Library, 54, North-Holland Publishing, 1997 | MR | Zbl
[4] Graham R. L., Sloane N., “On the covering radius of codes”, IEEE Trans. Inform. Theory, 31:3 (1985), 385–401 | DOI | MR | Zbl
[5] Cohen G., Lobstein A., Sloane N., “Further results on the covering radius of codes”, IEEE Trans. Inform. Theory, 32:5 (1986), 680–694 | DOI | MR | Zbl