The inversion of cryptographic hash functions using unbalanced approximations of round functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 157-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The report presents the results of solving the inversion problem of the truncated variant of cryptographic hash-function MD4 using new technique which includes the following steps: the substitution of some round subfunctions of MD4 by unbalanced Boolean functions; the solution of obtained (modified) problem; moving to the solution of original problem by taking into account the information from the solution of the corresponding modified problem. Suggested technique is combined with the additional conditions on chaining variables used previously by H. Dobbertin. Computational experiments illustrate the applicability of the proposed approach to the inversion problem of the $39$-step version of MD4 (MD4-39).
Mots-clés : cryptanalysis, MD4
Keywords: inversion problem of hash functions, SAT.
@article{PDMA_2017_10_a60,
     author = {I. A. Gribanova},
     title = {The inversion of cryptographic hash functions using unbalanced approximations of round functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {157--160},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a60/}
}
TY  - JOUR
AU  - I. A. Gribanova
TI  - The inversion of cryptographic hash functions using unbalanced approximations of round functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 157
EP  - 160
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a60/
LA  - ru
ID  - PDMA_2017_10_a60
ER  - 
%0 Journal Article
%A I. A. Gribanova
%T The inversion of cryptographic hash functions using unbalanced approximations of round functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 157-160
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a60/
%G ru
%F PDMA_2017_10_a60
I. A. Gribanova. The inversion of cryptographic hash functions using unbalanced approximations of round functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 157-160. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a60/

[1] Rivest R. L., “The MD4 message digest algorithm”, LNCS, 537, 1990, 303–311

[2] Merkle R. A., “Certified digital signature”, LNCS, 435, 1990, 218–238 | MR

[3] Damgard I. A., “A design principle for hash functions”, LNCS, 435, 1990, 416–427 | MR | Zbl

[4] Wang X., Lai X., Feng D., et al., “Cryptanalysis of the hash functions MD4 and RIPEMD”, LNCS, 3494, 2005, 1–18 | MR | Zbl

[5] Dobbertin H., “The first two rounds of md4 are not one-way”, LNCS, 1372, 1998, 284–292

[6] De D., Kumarasubramanian A., Venkatesan R., “Inversion attacks on secure hash functions using SAT solvers”, LNCS, 4501, 2007, 377–382 | Zbl

[7] Gribanova I., Zaikin O., Otpuschennikov I., Semenov A., “Using parallel SAT solving algorithms to study the inversion of MD4 hash function”, Parallelnye vychislitelnye tekhnologii, XI Mezhdunar. konf. PaVT'2017 (g. Kazan, 3–7 aprelya 2017 g.), Korotkie stati i opisaniya plakatov, Izdatelskii tsentr YuUrGU, Chelyabinsk, 2017, 100–109

[8] Otpuschennikov I., Semenov A., Gribanova I., et al., “Encoding cryptographic functions to SAT using TRANSALG system”, ECAI 2016, 22nd European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, 285, 2016, 1594–1595

[9] Biere A., “Lingeling essentials. A tutorial on design and implementation aspects of the the SAT solver lingeling”, Proc. Fifth Pragmatics of SAT Workshop, POS-14, EPiC Series, 27, 2014, 88

[10] Irkutskii superkompyuternyi tsentr SO RAN, , IDSTU SO RAN, Irkutsk http://hpc.icc.ru