Algorithm for constructing a~non-redundant minimax basis of strong associative rules
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 154-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Associative rules are the type of relations between data that reflect which features or events occur together and how often this happens. Strong associative rules are of interest for those applications where a high degree of confidence of dependencies is required. For example, they are used in information security, computer network analysis and medicine. Excessively large number of identified rules significantly complicates their expert analysis and application. To reduce the severity of this problem, the MClose algorithm is proposed, which extends the capabilities of the well-known algorithm Close. For a given binary context, the proposed algorithm generates non-redundant set of minimax strong associative rules. The algorithm is based on the Galois correspondence and the properties of closed sets.
Mots-clés : Galois connection
Keywords: closed sets, strong association rules, non-redundant, minimax basis.
@article{PDMA_2017_10_a59,
     author = {V. V. Bykova and A. V. Kataeva},
     title = {Algorithm for constructing a~non-redundant minimax basis of strong associative rules},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {154--157},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a59/}
}
TY  - JOUR
AU  - V. V. Bykova
AU  - A. V. Kataeva
TI  - Algorithm for constructing a~non-redundant minimax basis of strong associative rules
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 154
EP  - 157
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a59/
LA  - ru
ID  - PDMA_2017_10_a59
ER  - 
%0 Journal Article
%A V. V. Bykova
%A A. V. Kataeva
%T Algorithm for constructing a~non-redundant minimax basis of strong associative rules
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 154-157
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a59/
%G ru
%F PDMA_2017_10_a59
V. V. Bykova; A. V. Kataeva. Algorithm for constructing a~non-redundant minimax basis of strong associative rules. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 154-157. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a59/

[1] Birkgof G., Barti T., Sovremennaya prikladnaya algebra, Lan, SPb., 2005, 400 pp.

[2] Gurov S. I., Bulevy algebry, uporyadochennye mnozhestva, reshetki: opredeleniya, svoistva, primery, Knizhnyi dom “LIBROKOM”, M., 2013, 352 pp.

[3] Batura T. V., “Modeli i metody analiza kompyuternykh sotsialnykh setei”, Programmnye produkty i sistemy, 2013, no. 3, 130–137

[4] Platonov V. V., Semenov P. O., “Metody sokrascheniya razmernosti v sistemakh obnaruzheniya setevykh atak”, Problemy informatsionnoi bezopasnosti. Kompyuternye sistemy, 2012, no. 3, 40–45

[5] Kuznetsov S. O., “Avtomaticheskoe obuchenie na osnove analiza formalnykh ponyatii”, Avtomatika i telemekhanika, 2001, no. 10, 3–27 | MR | Zbl

[6] Zaki M. J., Hsiao C.-J., “Efficient algorithms for mining closed itemsets and their lattice structure”, IEEE Trans. Knowledge Data Eng., 17:4 (2005), 462–478 | DOI

[7] Maier D., Teoriya relyatsionnykh baz dannykh, Mir, M., 1987, 608 pp.

[8] Bykova V. V., Kataeva A. V., “O neizbytochnom predstavlenii minimaksnogo bazisa strogikh assotsiativnykh pravil”, Prikladnaya diskretnaya matematika, 2017, no. 36, 113–126 | DOI