Cyclic permutation of elements in one-dimensional array
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 145-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain an expression for the smallest number $J(N,K)$ of pairwise permutations of elements in an one-dimensional $N$-element array for resulting in the array being cyclically shifted $k$ positions. An algorithm implementing this $k$-cyclic permutation is also constructed. For an arbitrary integer $i$, $0\le i$, let $\omega(i)$ denote the smallest integer for which $f^{(\omega(i))}(i)\ge i$, where $f(i)=i-k$ if $i\ge k$, and $f(i)=N(1+[k/N])-k+i$ otherwise. Then the smallest number $J(N,K)$ equals the cardinality of the set $\{i\colon N>i\ge0\ \\ g(i)> i\}$, where the map $g\colon\{0,\dots,N-1\}\to\{0,\dots,N-1\}$ is given by the rule $g(i)=f^{(\omega(i))}(i)$ $(0\le i$.
Keywords: one-dimensional array, pairwise permutation of array elements.
Mots-clés : $k$-cyclic permutation
@article{PDMA_2017_10_a56,
     author = {V. V. Gotsulenko},
     title = {Cyclic permutation of elements in one-dimensional array},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {145--149},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a56/}
}
TY  - JOUR
AU  - V. V. Gotsulenko
TI  - Cyclic permutation of elements in one-dimensional array
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 145
EP  - 149
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a56/
LA  - ru
ID  - PDMA_2017_10_a56
ER  - 
%0 Journal Article
%A V. V. Gotsulenko
%T Cyclic permutation of elements in one-dimensional array
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 145-149
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a56/
%G ru
%F PDMA_2017_10_a56
V. V. Gotsulenko. Cyclic permutation of elements in one-dimensional array. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 145-149. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a56/

[1] Bentli Dzh., Zhemchuzhiny programmirovaniya, Piter, SPb., 2002, 272 pp.

[2] Stolyar S. E., Massivy, TsPO “Informatizatsiya obrazovaniya”, SPb., 2002, 39 pp.

[3] Kernighan B., Plauger P. J., Software Tools in Pascal, Addison-Wesley, Boston, 1981 | Zbl

[4] Kholl M., Teoriya grupp, IL, M., 1962, 460 pp.