Upper and lower bounds of the number of additional arcs in a~minimal edge $1$-extension of oriented path
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 134-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following upper and lower bounds of the number of additional arcs $ec(P_n)$ in a minimal edge $1$-extension of an oriented path $P_n$ are obtained: 1) for $P_n$ which has ends of different types and is not isomorphic to Hamiltonian path or to orientation consisting of alternating sources and sinks, $\lceil n/6\rceil+1\leq ec(P_n)\leq n+1$; 2) for $P_n$ with ends of equal types, $\lceil n/4\rceil+1\leq ec(P_n)\leq n+1$.
Keywords: minimal edge extension, fault-tolerance.
Mots-clés : path orientation
@article{PDMA_2017_10_a51,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {Upper and lower bounds of the number of additional arcs in a~minimal edge $1$-extension of oriented path},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {134--136},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a51/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - Upper and lower bounds of the number of additional arcs in a~minimal edge $1$-extension of oriented path
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 134
EP  - 136
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a51/
LA  - ru
ID  - PDMA_2017_10_a51
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T Upper and lower bounds of the number of additional arcs in a~minimal edge $1$-extension of oriented path
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 134-136
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a51/
%G ru
%F PDMA_2017_10_a51
M. B. Abrosimov; O. V. Modenova. Upper and lower bounds of the number of additional arcs in a~minimal edge $1$-extension of oriented path. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 134-136. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a51/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl

[2] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl

[3] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.

[4] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl

[5] Abrosimov M. B., Modenova O. V., “Kharakterizatsiya orgrafov s malym chislom dopolnitelnykh dug minimalnogo vershinnogo 1-rasshireniya”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2 (2013), 3–9 | Zbl

[6] Abrosimov M. B., Modenova O. V., “Kharakterizatsiya orgrafov s tremya dopolnitelnymi dugami v minimalnom vershinnom 1-rasshirenii”, Prikladnaya diskretnaya matematika, 2013, no. 3, 68–75