The reliability of circuits in Rosser--Turkett basis (in $P_3$) with faults of type~$0$ at the outputs of gates
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 124-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the realization of ternary logic functions by circuits from unreliable functional elements in Rosser–Turkett basis. We assume that all circuit elements are exposed to faults of type $0$ at the outputs and they pass to fault states independently with probability $\varepsilon$ ($\varepsilon1/2$). We have obtained the following results: 1) any function of ternary logic can be realized by a circuit with unreliability that is asymptotically not more than $\varepsilon$ for small $\varepsilon$; 2) for any function except the constant $0$ and the variable $ x_i$ ($i\in\mathbb N$), such a circuit is asymptotically optimal to reliability and operates with the unreliability asymptotically equalled $\varepsilon$ for small $\varepsilon$; 3) the functions $0$ and $x_i $ can be realized absolutely reliably.
Keywords: ternary logic functions, circuit from functional gates, unreliability of a circuit, reliability of a circuit, faults of type $0$.
@article{PDMA_2017_10_a47,
     author = {M. A. Alekhina and O. Yu. Barsukova},
     title = {The reliability of circuits in {Rosser--Turkett} basis  (in $P_3$) with faults of type~$0$ at the outputs of gates},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {124--126},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - O. Yu. Barsukova
TI  - The reliability of circuits in Rosser--Turkett basis  (in $P_3$) with faults of type~$0$ at the outputs of gates
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 124
EP  - 126
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/
LA  - ru
ID  - PDMA_2017_10_a47
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A O. Yu. Barsukova
%T The reliability of circuits in Rosser--Turkett basis  (in $P_3$) with faults of type~$0$ at the outputs of gates
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 124-126
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/
%G ru
%F PDMA_2017_10_a47
M. A. Alekhina; O. Yu. Barsukova. The reliability of circuits in Rosser--Turkett basis  (in $P_3$) with faults of type~$0$ at the outputs of gates. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 124-126. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/

[1] Alekhina M. A., “O nenadezhnosti skhem iz nenadezhnykh funktsionalnykh elementov pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Diskretnaya matematika, 5:2 (1993), 59–74 | MR | Zbl

[2] Alekhina M. A., “Sintez i slozhnost nadezhnykh skhem iz nenadezhnykh elementov”, Matematicheskie voprosy kibernetiki, 2002, no. 11, 193–218 | MR | Zbl

[3] Alekhina M. A., “O nadezhnosti skhem v proizvolnom polnom konechnom bazise pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Diskretnaya matematika, 24:3 (2012), 17–24 | DOI | MR | Zbl

[4] Alekhina M. A., Barsukova O. Yu., “Otsenki nenadezhnosti skhem v bazise Rossera–Turketta”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiz.-mat. nauki, 2014, no. 1(29), 5–19

[5] Alekhina M. A., Barsukova O. Yu., “Nenadëzhnost skhem v bazise Rossera–Turketta”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 109–110

[6] Barsukova O. Yu., Sintez nadezhnykh skhem, realizuyuschikh funktsii dvuznachnoi i trëkhznachnoi logik, Dis. $\dots$ kand. fiz.-mat. nauk, Penza, 2014, 87 pp.

[7] Alekhina M. A., Barsukova O. Yu., “O nadezhnosti skhem, realizuyuschikh funktsii trekhznachnoi logiki”, Diskretnyi analiz i issledovanie operatsii, 21:4(118) (2014), 12–24 | MR | Zbl

[8] Alekhina M. A., Barsukova O. Yu., “Nizhnyaya otsenka nenadezhnosti skhem v bazise, sostoyaschem iz funktsii Vebba”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 102–103 | DOI