The reliability of circuits in Rosser–Turkett basis (in $P_3$) with faults of type $0$ at the outputs of gates
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 124-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the realization of ternary logic functions by circuits from unreliable functional elements in Rosser–Turkett basis. We assume that all circuit elements are exposed to faults of type $0$ at the outputs and they pass to fault states independently with probability $\varepsilon$ ($\varepsilon1/2$). We have obtained the following results: 1) any function of ternary logic can be realized by a circuit with unreliability that is asymptotically not more than $\varepsilon$ for small $\varepsilon$; 2) for any function except the constant $0$ and the variable $ x_i$ ($i\in\mathbb N$), such a circuit is asymptotically optimal to reliability and operates with the unreliability asymptotically equalled $\varepsilon$ for small $\varepsilon$; 3) the functions $0$ and $x_i $ can be realized absolutely reliably.
Keywords: ternary logic functions, circuit from functional gates, unreliability of a circuit, reliability of a circuit, faults of type $0$.
@article{PDMA_2017_10_a47,
     author = {M. A. Alekhina and O. Yu. Barsukova},
     title = {The reliability of circuits in {Rosser{\textendash}Turkett} basis (in $P_3$) with faults of type~$0$ at the outputs of gates},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {124--126},
     year = {2017},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - O. Yu. Barsukova
TI  - The reliability of circuits in Rosser–Turkett basis (in $P_3$) with faults of type $0$ at the outputs of gates
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 124
EP  - 126
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/
LA  - ru
ID  - PDMA_2017_10_a47
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A O. Yu. Barsukova
%T The reliability of circuits in Rosser–Turkett basis (in $P_3$) with faults of type $0$ at the outputs of gates
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 124-126
%N 10
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/
%G ru
%F PDMA_2017_10_a47
M. A. Alekhina; O. Yu. Barsukova. The reliability of circuits in Rosser–Turkett basis (in $P_3$) with faults of type $0$ at the outputs of gates. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 124-126. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a47/

[1] Alekhina M. A., “O nenadezhnosti skhem iz nenadezhnykh funktsionalnykh elementov pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Diskretnaya matematika, 5:2 (1993), 59–74 | MR | Zbl

[2] Alekhina M. A., “Sintez i slozhnost nadezhnykh skhem iz nenadezhnykh elementov”, Matematicheskie voprosy kibernetiki, 2002, no. 11, 193–218 | MR | Zbl

[3] Alekhina M. A., “O nadezhnosti skhem v proizvolnom polnom konechnom bazise pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Diskretnaya matematika, 24:3 (2012), 17–24 | DOI | MR | Zbl

[4] Alekhina M. A., Barsukova O. Yu., “Otsenki nenadezhnosti skhem v bazise Rossera–Turketta”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiz.-mat. nauki, 2014, no. 1(29), 5–19

[5] Alekhina M. A., Barsukova O. Yu., “Nenadëzhnost skhem v bazise Rossera–Turketta”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 109–110

[6] Barsukova O. Yu., Sintez nadezhnykh skhem, realizuyuschikh funktsii dvuznachnoi i trëkhznachnoi logik, Dis. $\dots$ kand. fiz.-mat. nauk, Penza, 2014, 87 pp.

[7] Alekhina M. A., Barsukova O. Yu., “O nadezhnosti skhem, realizuyuschikh funktsii trekhznachnoi logiki”, Diskretnyi analiz i issledovanie operatsii, 21:4(118) (2014), 12–24 | MR | Zbl

[8] Alekhina M. A., Barsukova O. Yu., “Nizhnyaya otsenka nenadezhnosti skhem v bazise, sostoyaschem iz funktsii Vebba”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 102–103 | DOI