Machine learning based anomaly detection method for SQL
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 121-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an anomaly detection method for SQL is proposed. The method is based on the clasterization and recurrent neural networks for legitimate SQL-queries. The main idea is to teach neural network to detect non-typical SQL-queries for the server including queries independent from known instances of successful attacks.
Keywords: machine learning, anomaly detection, clasterization, recurrent neural network.
Mots-clés : SQL-injections
@article{PDMA_2017_10_a45,
     author = {A. I. Murzina},
     title = {Machine learning based anomaly detection method for {SQL}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {121--122},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a45/}
}
TY  - JOUR
AU  - A. I. Murzina
TI  - Machine learning based anomaly detection method for SQL
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 121
EP  - 122
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a45/
LA  - ru
ID  - PDMA_2017_10_a45
ER  - 
%0 Journal Article
%A A. I. Murzina
%T Machine learning based anomaly detection method for SQL
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 121-122
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a45/
%G ru
%F PDMA_2017_10_a45
A. I. Murzina. Machine learning based anomaly detection method for SQL. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 121-122. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a45/

[1] OWASP Top 10 Application Security Risks – 2017, https://www.owasp.org/index.php/Top_10_2017-Top_10

[2] Halfond W. G. J., Viegas J., Orso A., “A classification of SQL injection attacks and countermeasures”, Proc. ISSSE 2006, Washington, USA, Mar. 2006 https://pdfs.semanticscholar.org/81a5/02b52485e52713ccab6d260f15871c2acdcb.pdf

[3] Rawat R., Shrivastav S. K., “SQL injection attack detection using SVM”, Intern. J. Comput. Appl., 42:13 (2012), 1–4

[4] Buehrer G. T., Weide B. W., Sivilotti P. A. G., “Using parse tree validation to prevent SQL injection attacks”, Proc. SEM'05, ACM, N.Y., 2005, 106–113

[5] Cheng Y., “Mean shift, mode seeking, and clustering”, IEEE Trans. Pattern Analysis Machine Intelligence, 17:8 (1995), 790–799 | DOI

[6] Schmidhuber J., Hochreiter S., “Long short-term memory”, Neural Computation, 9 (1997), 1735–1780 | DOI