Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2017_10_a45, author = {A. I. Murzina}, title = {Machine learning based anomaly detection method for {SQL}}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {121--122}, publisher = {mathdoc}, number = {10}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a45/} }
A. I. Murzina. Machine learning based anomaly detection method for SQL. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 121-122. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a45/
[1] OWASP Top 10 Application Security Risks – 2017, https://www.owasp.org/index.php/Top_10_2017-Top_10
[2] Halfond W. G. J., Viegas J., Orso A., “A classification of SQL injection attacks and countermeasures”, Proc. ISSSE 2006, Washington, USA, Mar. 2006 https://pdfs.semanticscholar.org/81a5/02b52485e52713ccab6d260f15871c2acdcb.pdf
[3] Rawat R., Shrivastav S. K., “SQL injection attack detection using SVM”, Intern. J. Comput. Appl., 42:13 (2012), 1–4
[4] Buehrer G. T., Weide B. W., Sivilotti P. A. G., “Using parse tree validation to prevent SQL injection attacks”, Proc. SEM'05, ACM, N.Y., 2005, 106–113
[5] Cheng Y., “Mean shift, mode seeking, and clustering”, IEEE Trans. Pattern Analysis Machine Intelligence, 17:8 (1995), 790–799 | DOI
[6] Schmidhuber J., Hochreiter S., “Long short-term memory”, Neural Computation, 9 (1997), 1735–1780 | DOI