Exponents of mixing digraphs associated with one and two feedbacks shift registers
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 84-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n>k\ge1$, $r>1$. Denote by $\operatorname{MAG}(n,r,k)$ a set of modified additive generators based on $k$-feedback shift registers of a length $n$ over the set $V_r$ of all the binary vectors of a length $r$. Let $g$ and $\mu$ be some permutations on $V_r$, $g$ modifies the feedback of a register in $\operatorname{MAG}(n,r,1)$, $g$ and $\mu$ modify feedbacks of a register in $\operatorname{MAG}(n,r,2)$. Let $\varphi^g$ and $\varphi^{g,\mu}$ be transformations of the vector space $(V_r)^n$ produced by these registers respectively, and $\Gamma(\varphi^g)$ and $\Gamma(\varphi^{g,\mu})$ be mixing digraphs associated with $\varphi^g$ and $\varphi^{g,\mu}$. This paper presents some results of analysing the exponent estimations for $\Gamma(\varphi^g)$ and $\Gamma(\varphi^{g,\mu})$. The value $\zeta=\exp\Gamma(\varphi^g)-\exp\Gamma(\varphi^{g,\mu})$ is positive for a large number of parameter values. It is shown that $\zeta\le\exp\Gamma(\varphi^g)/2$. The smallest value of $\exp\Gamma(\varphi^g)$ equals $n+1$ and the smallest value of $\exp\Gamma(\varphi^{g,\mu})$ equals $\lceil n/2\rceil+1$. This means that mixing properties of $\varphi^{g,\mu}$ can be improved up to 2 times compared to mixing properties of $\varphi^g$.
Keywords:
mixing properties, modified additive generator, feedback shift register, exponent of digraph.
@article{PDMA_2017_10_a33,
author = {A. M. Koreneva},
title = {Exponents of mixing digraphs associated with one and two feedbacks shift registers},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {84--87},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a33/}
}
A. M. Koreneva. Exponents of mixing digraphs associated with one and two feedbacks shift registers. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 84-87. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a33/
[1] Dorokhova (Koreneva) A. M., “Otsenki eksponentov peremeshivayuschikh grafov nekotorykh modifikatsii additivnykh generatorov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 60–64
[2] Koreneva A. M., Fomichëv V. M., “O suschestvennykh peremennykh funktsii perekhodov modifitsirovannogo additivnogo generatora”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 51–54
[3] Koreneva A. M., Fomichëv V. M., “Peremeshivayuschie svoistva modifitsirovannykh additivnykh generatorov”, Diskretnyi analiz i issledovanie operatsii, 24:2 (2017), 32–52
[4] Koreneva A. M., “O primitivnosti peremeshivayuschikh orgrafov biektivnykh registrov sdviga s dvumya obratnymi svyazyami”, Prikladnaya diskretnaya matematika, 2017 (to appear)