Construction of $(4,8)$-schemes of visual cryptography on the base of a class of linear hash functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 81-83
Cet article a éte moissonné depuis la source Math-Net.Ru
In the work, with the use of visual cryptography, a $(4,8)$-scheme is constructed for sharing secret, which is a black and white image. To construct the $(4,8)$-scheme, the $(4,4)$-scheme of visual cryptography and a class of linear hash functions are used. It is shown that using this class makes it possible to build a secure scheme with an acceptable relative contrast of the recovered secret black and white image.
Keywords:
visual cryptography, linear hash functions.
@article{PDMA_2017_10_a32,
author = {N. A. Zorina and Y. V. Kosolapov},
title = {Construction of $(4,8)$-schemes of visual cryptography on the base of a~class of linear hash functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {81--83},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/}
}
TY - JOUR AU - N. A. Zorina AU - Y. V. Kosolapov TI - Construction of $(4,8)$-schemes of visual cryptography on the base of a class of linear hash functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 81 EP - 83 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/ LA - ru ID - PDMA_2017_10_a32 ER -
%0 Journal Article %A N. A. Zorina %A Y. V. Kosolapov %T Construction of $(4,8)$-schemes of visual cryptography on the base of a class of linear hash functions %J Prikladnaya Diskretnaya Matematika. Supplement %D 2017 %P 81-83 %N 10 %U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/ %G ru %F PDMA_2017_10_a32
N. A. Zorina; Y. V. Kosolapov. Construction of $(4,8)$-schemes of visual cryptography on the base of a class of linear hash functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 81-83. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/
[1] Naor M., Shamir A., “Visual cryptography”, LNCS, 950, 1994, 1–12 | MR
[2] Carter J. L., Wegman M. N., “Universal classes of hash functions”, J. Computer System Sciences, 18 (1979), 143–154 | DOI | MR | Zbl
[3] Lakshmanan R., Arumugam S., “Construction of a $(k,n)$-visual cryptography scheme”, Designs, Codes and Cryptography, 82:3 (2017), 629–645 | DOI | MR | Zbl