Construction of $(4,8)$-schemes of visual cryptography on the base of a~class of linear hash functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 81-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, with the use of visual cryptography, a $(4,8)$-scheme is constructed for sharing secret, which is a black and white image. To construct the $(4,8)$-scheme, the $(4,4)$-scheme of visual cryptography and a class of linear hash functions are used. It is shown that using this class makes it possible to build a secure scheme with an acceptable relative contrast of the recovered secret black and white image.
Keywords: visual cryptography, linear hash functions.
@article{PDMA_2017_10_a32,
     author = {N. A. Zorina and Y. V. Kosolapov},
     title = {Construction of $(4,8)$-schemes of visual cryptography on the base of a~class of linear hash functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {81--83},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/}
}
TY  - JOUR
AU  - N. A. Zorina
AU  - Y. V. Kosolapov
TI  - Construction of $(4,8)$-schemes of visual cryptography on the base of a~class of linear hash functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 81
EP  - 83
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/
LA  - ru
ID  - PDMA_2017_10_a32
ER  - 
%0 Journal Article
%A N. A. Zorina
%A Y. V. Kosolapov
%T Construction of $(4,8)$-schemes of visual cryptography on the base of a~class of linear hash functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 81-83
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/
%G ru
%F PDMA_2017_10_a32
N. A. Zorina; Y. V. Kosolapov. Construction of $(4,8)$-schemes of visual cryptography on the base of a~class of linear hash functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 81-83. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a32/

[1] Naor M., Shamir A., “Visual cryptography”, LNCS, 950, 1994, 1–12 | MR

[2] Carter J. L., Wegman M. N., “Universal classes of hash functions”, J. Computer System Sciences, 18 (1979), 143–154 | DOI | MR | Zbl

[3] Lakshmanan R., Arumugam S., “Construction of a $(k,n)$-visual cryptography scheme”, Designs, Codes and Cryptography, 82:3 (2017), 629–645 | DOI | MR | Zbl