Self-programmable cellular automata for cryptography
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

This report provides an information about self-programmable cellular automata (SPCA) and their implementation. As a result of researching and testing SPCA in practise, it is shown that the cellular automata of this type can be successfully used as the pseudorandom number generators (PRNG) in cryptography. The following techniques are proposed to increase the security of such PRNG: 1) read the cell values in different periods of time; 2) use the cellular programming technique for selection of rules; 3) combine one- and two-dimensional cellular automata; 4) increase the number of cells and the neighbourhood radius.
Keywords: cellular automata, self-programmable cellular automata, pseudorandom number generator, cryptography.
@article{PDMA_2017_10_a31,
     author = {A. A. Efremova and A. N. Gamova},
     title = {Self-programmable cellular automata for cryptography},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {76--81},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a31/}
}
TY  - JOUR
AU  - A. A. Efremova
AU  - A. N. Gamova
TI  - Self-programmable cellular automata for cryptography
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 76
EP  - 81
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a31/
LA  - ru
ID  - PDMA_2017_10_a31
ER  - 
%0 Journal Article
%A A. A. Efremova
%A A. N. Gamova
%T Self-programmable cellular automata for cryptography
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 76-81
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a31/
%G ru
%F PDMA_2017_10_a31
A. A. Efremova; A. N. Gamova. Self-programmable cellular automata for cryptography. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 76-81. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a31/

[1] Wolfram S., A New Kind of Science, Wolfram Media, 2002, 1192 pp. | MR | Zbl

[2] Seredinski F., Bouvry P., Zomaya A. Y., “Cellular automata computations and secret key cryptography”, Parallel Computing, 30 (2004), 753–766 | DOI | MR

[3] Tomassini M., Perrenoud M., “Nonuniform cellular automata for cryptography”, Complex Systems, 2000, no. 12, 71–81 | MR | Zbl

[4] Nandi S., Kar B., Chaudhuri P., “Theory and applications of cellular automata in cryptography”, IEEE Trans. Comput., 43:12 (1994), 1346–1357 | DOI | MR

[5] Blackburn S. R., Murphy S., Paterson K. G., “Comments on ‘Theory and Applications of Cellular Automata in Cryptography’ ”, IEEE Trans. Comput., 46:5 (1997), 637–638 | DOI | MR

[6] Guan S. U., Tan S. K., “Pseudorandom number generation with self-programmable cellular automata”, IEEE Trans. Computer Aided Design of Integrated Circuits and Systems, 23:7 (2004), 1095–1101 | DOI

[7] Efremova A. A., Gamova A. N., “Generator psevdosluchainykh chisel na osnove kletochnykh avtomatov”, Materialy Mezhdunar. nauch. konf. “Kompyuternye nauki i informatsionnye tekhnologii”, SGU, Saratov, 2016, 131–134

[8] Marsaglia G., Diehard: A Battery of Tests of Randomness, , 1995 http://stat.fsu.edu/pub/diehard/