On primitivity of mixing digraphs for substitutions of shift registers
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 14-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g$ and $h$ be substitutions defined by binary feedback left- and right-shift registers $R_l$ and $R_r$ respectively on their sets of states, $n$ be the length of each of these registers, $f_l=x_1\oplus\phi(x_2,\dots,x_n)$ and $f_r=x_n\oplus\psi(x_1,\dots,x_{n-1})$ be the feedback functions of $R_l$ and $R_r$ respectively, and $i_1,\dots,i_m$ be the numbers of the register stages which are the inputs of the feedback in $R_l$, $1=i_1$. So $x_{i_1},\dots,x_{i_m}$ are all essential variables of the function $f_l$. Let $G(s)$ be a mixing digraph for a substitution $s\in\{g,h,gh,hg\}$. We prove the following statements: 1) suppose, $g^{-1}=h$, then $G(g)$ is primitive iff $G(g^{-1})$ is primitive; in this case, $\exp G(g)=\exp G(g^{-1})$ if $i_k+i_{m+2-k}=n+2$ for all $k\in\{2,\dots,m\}$; 2) the set of arcs in $G(gh)$ consists of $n$ loops (one at each vertex) and arcs $(i,n)$, $i\in\{1,\dots,n-1\}$, such that $x_i$ is an essential variable of the function $\psi(x_1,\dots,x_{n-1})\oplus\phi(x_1,\dots,x_{n-1})$; 3) the set of arcs in $G(hg)$ consists of $n$ loops (one at each vertex) and arcs $(i,1)$, $i\in\{2,\dots,n\}$, such that $x_i$ is an essential variable of the function $\psi(x_2,\dots,x_n)\oplus\phi(x_2,\dots,x_n)$; 4) suppose, $h$ is a triangular substitution on $\{0,1\}^n$ and $G(g)$ is primitive; then the digraphs $G(g)\cdot G(h)$ and $G(h)\cdot G(g)$ are also primitive; in this case the exponent of each of these digraphs does not exceed $\exp G(g)$.
Keywords: mixing digraph, primitive digraph, exponent of graph, shift register
Mots-clés : triangle transformation.
@article{PDMA_2017_10_a3,
     author = {V. S. Grigoriev and V. M. Fomichev},
     title = {On primitivity of mixing digraphs for substitutions of shift registers},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {14--16},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a3/}
}
TY  - JOUR
AU  - V. S. Grigoriev
AU  - V. M. Fomichev
TI  - On primitivity of mixing digraphs for substitutions of shift registers
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 14
EP  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a3/
LA  - ru
ID  - PDMA_2017_10_a3
ER  - 
%0 Journal Article
%A V. S. Grigoriev
%A V. M. Fomichev
%T On primitivity of mixing digraphs for substitutions of shift registers
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 14-16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a3/
%G ru
%F PDMA_2017_10_a3
V. S. Grigoriev; V. M. Fomichev. On primitivity of mixing digraphs for substitutions of shift registers. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 14-16. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a3/

[1] Fomichev V. M., Melnikov D. A., Kriptograficheskie metody zaschity informatsii. Ch. 1. Matematicheskie aspekty, v 2 ch., Izdatelstvo Yurait, M., 2016, 209 pp.

[2] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112

[3] Fomichev V. M., “Ob otsenkakh eksponentov orgrafov s ispolzovaniem chisel Frobeniusa”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 137–140

[4] Avezova Ya. E., Fomichev V. M., “Usloviya primitivnosti sistemy dvukh grafov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 113–114