Cryptographic analysis of the generalized ElGamal's cipher over $\operatorname{GL}(8,\mathbb F_{251})$
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 64-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A cryptographic analysis is given to the generalized ElGamal's protocol over group $\operatorname{GL}(8,\mathbb F_{251})$ that was introduced by Pedro Hecht. The exchange of a secret key in this protocol is a particular case of the Shpilrain–Ushakov's key exchange protocol. We show that there exists an efficient algorithm for finding this key without computing the secret parameters of the protocol. Thus, the Hecht's protocol is theoretically and practically vulnerable.
Mots-clés : cryptanalysis, ElGamal's protocol
Keywords: Shpilrain–Ushakovs's protocol, Pedro Hecht's protocol, linear decomposition method.
@article{PDMA_2017_10_a26,
     author = {D. D. Bolotov and E. A. Magdin},
     title = {Cryptographic analysis of the generalized {ElGamal's} cipher over~$\operatorname{GL}(8,\mathbb F_{251})$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {64--66},
     year = {2017},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a26/}
}
TY  - JOUR
AU  - D. D. Bolotov
AU  - E. A. Magdin
TI  - Cryptographic analysis of the generalized ElGamal's cipher over $\operatorname{GL}(8,\mathbb F_{251})$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 64
EP  - 66
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a26/
LA  - ru
ID  - PDMA_2017_10_a26
ER  - 
%0 Journal Article
%A D. D. Bolotov
%A E. A. Magdin
%T Cryptographic analysis of the generalized ElGamal's cipher over $\operatorname{GL}(8,\mathbb F_{251})$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 64-66
%N 10
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a26/
%G ru
%F PDMA_2017_10_a26
D. D. Bolotov; E. A. Magdin. Cryptographic analysis of the generalized ElGamal's cipher over $\operatorname{GL}(8,\mathbb F_{251})$. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 64-66. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a26/

[1] Hecht P., Post-Quantum Cryptography (PQC): Generalized ElGamal Cipher over $\mathrm{GF}(251^8)$, 12 Feb. 2017, 6 pp., arXiv: 1702.03587v1[cs.CR]

[2] Shpilrain V., Ushakov A., “Thompson's group and public key cryptography”, LNCS, 3531, 2005, 151–164

[3] Romankov V. A., Algebraicheskaya kriptografiya, Izd-vo Om. un-ta, Omsk, 2013, 135 pp.