Some decompositions for quadratic Boolean threshold functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 56-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Arbitrary quadratic Boolean threshold functions $f$ defined by a quadratic form $w(x_1,\dots,x_n)=e(x_1,\dots,x_m)+a(x_{m+1},\dots,x_n)$ and a threshold $t$ are considered together with the quadratic forms $e$ and $a$ defined by the corresponding constant matrices $1_m$ and $a_{n-m}$. We propose a criterion for existence of a non-trivial decomposition of such a function $f$, namely: such a decomposition exists if and only if any of the following conditions holds: 1) $t$ and there exists $j$ in $\{1,\dots,n-m\}$ such that $\lfloor t\rfloor_e+a{(j-1)}^2\le t\lceil t\rceil_e$; 2) $t>m^2$ and there exist $i$ in $\{1,\dots,m\}$ and $j$ in $\{1,\dots,n-m\}$ such that $$ \max\{(i-1)^2+a(n-m)^2,m^2+a(j-1)^2\}\le t ^2+aj^2; $$ 3) $t>m^2$ and there exist $i$ in $\{1,\dots,m\}$, $j$ and $l$ in $\{1,\dots,n-m\}$ such that $j$ and $$ \max\{(i-1)^2+a(l-1)^2,m^2+a(j-1)^2\}\le t\min\{al^2,i^2+aj^2\}, $$ where $\lfloor t\rfloor_e=\max\{z\colon z=e(x),\ x\in\{0,1\}^m,\ z\le t\}$, $\lceil t\rceil_e=\min\{z\colon z=e(x),\ x\in\{0,1\}^m,\ z>t\}$.
Keywords: quadratic Boolean threshold functions
Mots-clés : decomposition.
@article{PDMA_2017_10_a23,
     author = {A. N. Shurupov},
     title = {Some decompositions for quadratic {Boolean} threshold functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {56--59},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a23/}
}
TY  - JOUR
AU  - A. N. Shurupov
TI  - Some decompositions for quadratic Boolean threshold functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 56
EP  - 59
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a23/
LA  - ru
ID  - PDMA_2017_10_a23
ER  - 
%0 Journal Article
%A A. N. Shurupov
%T Some decompositions for quadratic Boolean threshold functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 56-59
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a23/
%G ru
%F PDMA_2017_10_a23
A. N. Shurupov. Some decompositions for quadratic Boolean threshold functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 56-59. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a23/

[1] Shurupov A. N., “Kriterii funktsionalnoi razdelimosti kvadratichnykh bulevykh porogovykh funktsii”, Prikladnaya diskretnaya matematika, 2015, no. 2(28), 37–45

[2] Shurupov A. N., “O funktsionalnoi razdelimosti bulevykh porogovykh funktsii”, Diskretnaya matematika, 9:2 (1997), 59–73 | DOI | MR | Zbl

[3] Shurupov A. N., “Nekotorye strukturnye svoistva kvadratichnykh bulevykh porogovykh funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 48–51