Mots-clés : spectral coefficient
@article{PDMA_2017_10_a19,
author = {K. N. Pankov},
title = {Refined asymptotic estimates for the number of $(n,m,k)$-resilient {Boolean} mappings},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {46--49},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a19/}
}
K. N. Pankov. Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 46-49. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a19/
[1] Pankov K. N., “Asimptoticheskie otsenki dlya chisel dvoichnykh otobrazhenii s zadannymi kriptograficheskimi svoistvami”, Matematicheskie voprosy kriptografii, 2014, no. 4, 73–97
[2] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012 | MR
[3] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of Mathematics and its Applications, 134, Cambridge University Press, N.Y., 2010, 398–472
[4] Denisov O. V., “Lokalnaya predelnaya teorema dlya raspredeleniya chasti spektra sluchainoi dvoichnoi funktsii”, Diskretnaya matematika, 12:1 (2000), 82–95 | DOI | MR | Zbl
[5] Slovar kriptograficheskikh terminov, MTsNMO, M., 2006
[6] Sachkov V. N., Kurs kombinatornogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2013
[7] Pankov K. N., “Otsenki skorosti skhodimosti v predelnykh teoremakh dlya sovmestnykh raspredelenii chasti kharakteristik sluchainykh dvoichnykh otobrazhenii”, Prikladnaya diskretnaya matematika, 2012, no. 4, 14–30
[8] Canfield E. R., Gao Z., Greenhill C., et al., “Asymptotic enumeration of correlation-immune Boolean functions”, Cryptography and Communications, 1 (2010), 111–126 | DOI | MR | Zbl