Permutation binomials over finite fields. Conditions of existence
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 44-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $1\leq j$, $1\leq k\leq2^n- 1$, $\alpha$ is a primitive element of the field $\mathbb F_{2^n}$. It is proved that: 1) if a function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(y)=\alpha^ky^i+y^j$ is one-to-one function, then $\operatorname{gcd}(i-j,2^n-1)$ doesn't divide $\operatorname{gcd}(k,2^n-1)$; 2) if $2^n-1$ is prime, then one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(x)=\alpha^kx^i+x^j$ doesn't exist; 3) if $n$ is a composite number, then there is one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(x)=\alpha^kx^i+x^j$; 4) if $2^n-1$ has a divisor $d\frac n{2\log_2(n)}-1$, then there is one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(y)=ay^i+y^j$ for some $a\in\mathbb F^*_{2^n}$, $0$.
Keywords: polynomial representation
Mots-clés : permutation polynomials, permutation binomials.
@article{PDMA_2017_10_a17,
     author = {A. V. Miloserdov},
     title = {Permutation binomials over finite fields. {Conditions} of existence},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {44--45},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a17/}
}
TY  - JOUR
AU  - A. V. Miloserdov
TI  - Permutation binomials over finite fields. Conditions of existence
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 44
EP  - 45
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a17/
LA  - ru
ID  - PDMA_2017_10_a17
ER  - 
%0 Journal Article
%A A. V. Miloserdov
%T Permutation binomials over finite fields. Conditions of existence
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 44-45
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a17/
%G ru
%F PDMA_2017_10_a17
A. V. Miloserdov. Permutation binomials over finite fields. Conditions of existence. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 44-45. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a17/

[1] Shallue C. J., Permutation Polynomials of Finite Fields, Monash University, 2012

[2] Masuda A. M., Zieve M. E., “Permutation binomials over finite Ffeld”, Trans. AMS, 361:8 (2009), 4169–4180 | DOI | MR | Zbl

[3] Miloserdov A. V., Kombinatornye svoistva polinomialnogo predstavleniya bulevoi funktsii, Vypusknaya kvalifikatsionnaya rabota bakalavra, NGU, Novosibirsk, 2017