Permutation binomials over finite fields. Conditions of existence
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 44-45
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $1\leq j$, $1\leq k\leq2^n- 1$, $\alpha$ is a primitive element of the field $\mathbb F_{2^n}$. It is proved that: 1) if a function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(y)=\alpha^ky^i+y^j$ is one-to-one function, then $\operatorname{gcd}(i-j,2^n-1)$ doesn't divide $\operatorname{gcd}(k,2^n-1)$; 2) if $2^n-1$ is prime, then one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(x)=\alpha^kx^i+x^j$ doesn't exist; 3) if $n$ is a composite number, then there is one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(x)=\alpha^kx^i+x^j$; 4) if $2^n-1$ has a divisor $d\frac n{2\log_2(n)}-1$, then there is one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(y)=ay^i+y^j$ for some $a\in\mathbb F^*_{2^n}$, $0$.
Keywords:
polynomial representation
Mots-clés : permutation polynomials, permutation binomials.
Mots-clés : permutation polynomials, permutation binomials.
@article{PDMA_2017_10_a17,
author = {A. V. Miloserdov},
title = {Permutation binomials over finite fields. {Conditions} of existence},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {44--45},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a17/}
}
A. V. Miloserdov. Permutation binomials over finite fields. Conditions of existence. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 44-45. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a17/
[1] Shallue C. J., Permutation Polynomials of Finite Fields, Monash University, 2012
[2] Masuda A. M., Zieve M. E., “Permutation binomials over finite Ffeld”, Trans. AMS, 361:8 (2009), 4169–4180 | DOI | MR | Zbl
[3] Miloserdov A. V., Kombinatornye svoistva polinomialnogo predstavleniya bulevoi funktsii, Vypusknaya kvalifikatsionnaya rabota bakalavra, NGU, Novosibirsk, 2017