On some properties of known isometric mappings of the set of bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 43-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there doesn't exist an isometry on the set of all Boolean functions in $2k$ variables which acts on the set of bent functions by assigning the dual bent functions. We state the affine equivalence of a bent function and its dual bent function in the case of small number of variables.
Keywords: Boolean function, bent function, isometry, dual bent function.
@article{PDMA_2017_10_a16,
     author = {A. V. Kutsenko},
     title = {On some properties of known isometric mappings of the set of bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {43--44},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a16/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On some properties of known isometric mappings of the set of bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 43
EP  - 44
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a16/
LA  - ru
ID  - PDMA_2017_10_a16
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On some properties of known isometric mappings of the set of bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 43-44
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a16/
%G ru
%F PDMA_2017_10_a16
A. V. Kutsenko. On some properties of known isometric mappings of the set of bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 43-44. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a16/