On some properties of known isometric mappings of the set of bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 43-44
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that there doesn't exist an isometry on the set of all Boolean functions in $2k$ variables which acts on the set of bent functions by assigning the dual bent functions. We state the affine equivalence of a bent function and its dual bent function in the case of small number of variables.
Keywords:
Boolean function, bent function, isometry, dual bent function.
@article{PDMA_2017_10_a16,
author = {A. V. Kutsenko},
title = {On some properties of known isometric mappings of the set of bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {43--44},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a16/}
}
A. V. Kutsenko. On some properties of known isometric mappings of the set of bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 43-44. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a16/
[1] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl
[3] Carlet C., “Boolean functions for cryptography and error-correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge Univ. Press, N.Y., 2010, 257–397 | DOI | Zbl
[4] Tokareva N. N., “Gruppa avtomorfizmov mnozhestva bent-funktsii”, Diskretnaya matematika, 22:4 (2010), 34–42 | DOI | MR | Zbl