A bent function construction by a~bent function that is affine on several cosets of a~linear subspace
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 41-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction of bent functions by a given bent function is introduced. Let $f$ be a bent function in $2k$ variables and, for some $w\in\mathbb F_2^{2k}$, the bent function $f(x)\oplus\langle w,x\rangle$ is constant on each of distinct cosets $C_1,\dots,C_{2^{2k-2t}}$ of some $t$-dimensional linear subspace of $\mathbb F_2^{2k}$, where $0\leq t\leq k$. Then $f \oplus\operatorname{Ind}_{C_1\cup\dots\cup C_{2^{2k - 2t}}}$ is a bent function too. This is a generalization of the construction of bent functions at the minimal possible Hamming distance from a given bent function. For $t=2$ and for a quadratic bent function $f$, a simplification of the construction is done. It is proved that the construction generates not more than $2^t\prod_{i=0}^{t-1}{(2^{2k-2i}-1)/(2^{t-i}-1})$ bent functions for an arbitrary bent function $f$ and a fixed $t$. For $t\geq2$, the bound is attainable if and only if $f$ is quadratic.
Keywords: Boolean functions, bent functions, the minimal distance, affinity.
@article{PDMA_2017_10_a15,
     author = {N. A. Kolomeec},
     title = {A bent function construction by a~bent function that is affine on several cosets of a~linear subspace},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {41--42},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - A bent function construction by a~bent function that is affine on several cosets of a~linear subspace
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 41
EP  - 42
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/
LA  - ru
ID  - PDMA_2017_10_a15
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T A bent function construction by a~bent function that is affine on several cosets of a~linear subspace
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 41-42
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/
%G ru
%F PDMA_2017_10_a15
N. A. Kolomeec. A bent function construction by a~bent function that is affine on several cosets of a~linear subspace. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 41-42. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/

[1] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012, 584 pp. | MR

[3] Tokareva N. N., Bent Functions, Results and Applications to Cryptography, Acad. Press. Elsevier, 2015 | MR | Zbl

[4] Carlet C., “Two new classes of bent functions”, LNCS, 765, 1994, 77–101 | MR | Zbl

[5] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3, 28–39

[6] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Problemy peredachi informatsii, 33:1 (1997), 75–86 | MR | Zbl

[7] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl