A bent function construction by a~bent function that is affine on several cosets of a~linear subspace
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 41-42
Voir la notice de l'article provenant de la source Math-Net.Ru
A construction of bent functions by a given bent function is introduced. Let $f$ be a bent function in $2k$ variables and, for some $w\in\mathbb F_2^{2k}$, the bent function $f(x)\oplus\langle w,x\rangle$ is constant on each of distinct cosets $C_1,\dots,C_{2^{2k-2t}}$ of some $t$-dimensional linear subspace of $\mathbb F_2^{2k}$, where $0\leq t\leq k$. Then $f \oplus\operatorname{Ind}_{C_1\cup\dots\cup C_{2^{2k - 2t}}}$ is a bent function too. This is a generalization of the construction of bent functions at the minimal possible Hamming distance from a given bent function. For $t=2$ and for a quadratic bent function $f$, a simplification of the construction is done. It is proved that the construction generates not more than $2^t\prod_{i=0}^{t-1}{(2^{2k-2i}-1)/(2^{t-i}-1})$ bent functions for an arbitrary bent function $f$ and a fixed $t$. For $t\geq2$, the bound is attainable if and only if $f$ is quadratic.
Keywords:
Boolean functions, bent functions, the minimal distance, affinity.
@article{PDMA_2017_10_a15,
author = {N. A. Kolomeec},
title = {A bent function construction by a~bent function that is affine on several cosets of a~linear subspace},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {41--42},
publisher = {mathdoc},
number = {10},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/}
}
TY - JOUR AU - N. A. Kolomeec TI - A bent function construction by a~bent function that is affine on several cosets of a~linear subspace JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 41 EP - 42 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/ LA - ru ID - PDMA_2017_10_a15 ER -
%0 Journal Article %A N. A. Kolomeec %T A bent function construction by a~bent function that is affine on several cosets of a~linear subspace %J Prikladnaya Diskretnaya Matematika. Supplement %D 2017 %P 41-42 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/ %G ru %F PDMA_2017_10_a15
N. A. Kolomeec. A bent function construction by a~bent function that is affine on several cosets of a~linear subspace. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 41-42. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a15/