A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 35-36
Cet article a éte moissonné depuis la source Math-Net.Ru
A vector Boolean function $F$ from $\mathbb F_2^n$ to $\mathbb F_2^n$ is called almost perfect nonlinear (APN) if equation $F(x)\oplus F(x\oplus a)=b$ has at most 2 solutions for all vectors $a,b\in\mathbb F_2^n$, where $a$ is non-zero. Two functions $F$ and $G$ are called differentially equivalent if $B_a(F)=B_a(G)$ for all $a\in\mathbb F_2^n$, where $B_a(F)=\{F(x)\oplus F(x\oplus a)\colon x\in\mathbb F_2^n\}$. A classification of differentially non-equivalent quadratic APN function in 5 and 6 variables is obtained. We prove that, for a quadratic APN function $F$ in $n$ variables, $n\leqslant6$, all differentially equivalent to $F$ quadratic functions are represented as $F\oplus A$, where $A$ is an affine function.
Keywords:
APN functions, differential equivalence, linear spectrum.
@article{PDMA_2017_10_a12,
author = {A. A. Gorodilova},
title = {A classification of differentially nonequivalent quadratic {APN} function in~5 and~6 variables},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {35--36},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/}
}
TY - JOUR AU - A. A. Gorodilova TI - A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 35 EP - 36 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/ LA - ru ID - PDMA_2017_10_a12 ER -
A. A. Gorodilova. A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 35-36. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/
[1] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | MR
[2] Gorodilova A. A., “O differentsialnoi ekvivalentnosti kvadratichnykh APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 21–24
[3] Gorodilova A. A., “Lineinyi spektr kvadratichnykh APN-funktsii”, Prikladnaya diskretnaya matematika, 2016, no. 4(34), 5–16 | MR