A classification of differentially nonequivalent quadratic APN function in~5 and~6 variables
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 35-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector Boolean function $F$ from $\mathbb F_2^n$ to $\mathbb F_2^n$ is called almost perfect nonlinear (APN) if equation $F(x)\oplus F(x\oplus a)=b$ has at most 2 solutions for all vectors $a,b\in\mathbb F_2^n$, where $a$ is non-zero. Two functions $F$ and $G$ are called differentially equivalent if $B_a(F)=B_a(G)$ for all $a\in\mathbb F_2^n$, where $B_a(F)=\{F(x)\oplus F(x\oplus a)\colon x\in\mathbb F_2^n\}$. A classification of differentially non-equivalent quadratic APN function in 5 and 6 variables is obtained. We prove that, for a quadratic APN function $F$ in $n$ variables, $n\leqslant6$, all differentially equivalent to $F$ quadratic functions are represented as $F\oplus A$, where $A$ is an affine function.
Keywords: APN functions, differential equivalence, linear spectrum.
@article{PDMA_2017_10_a12,
     author = {A. A. Gorodilova},
     title = {A classification of differentially nonequivalent quadratic {APN} function in~5 and~6 variables},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {35--36},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - A classification of differentially nonequivalent quadratic APN function in~5 and~6 variables
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 35
EP  - 36
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/
LA  - ru
ID  - PDMA_2017_10_a12
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T A classification of differentially nonequivalent quadratic APN function in~5 and~6 variables
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 35-36
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/
%G ru
%F PDMA_2017_10_a12
A. A. Gorodilova. A classification of differentially nonequivalent quadratic APN function in~5 and~6 variables. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 35-36. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a12/

[1] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | MR

[2] Gorodilova A. A., “O differentsialnoi ekvivalentnosti kvadratichnykh APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 21–24

[3] Gorodilova A. A., “Lineinyi spektr kvadratichnykh APN-funktsii”, Prikladnaya diskretnaya matematika, 2016, no. 4(34), 5–16 | MR