Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 29-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the hyperelliptic curves of the form $C_1\colon y^2=x^{2g+1}+ax^{g+1}+bx$ and $C_2\colon y^2=x^{2g+2}+ax^{g+1}+b$ over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. We transform these curves to the form $C_{1,\rho}\colon y^2=x^{2g+1}-2\rho x^{g+1}+x$ and $C_{2,\rho}\colon y^2=x^{2g+2}-2\rho x^{g+1}+1$ and prove that the coefficients of corresponding Cartier–Manin matrices are Legendre polynomials. As a consequence, the matrices are centrosymmetric and, therefore, it's enough to compute a half of coefficients to compute the matrix. Moreover, they are equivalent to block-diagonal matrices under transformation of the form $S^{(p)}WS^{-1}$. In the case of $\operatorname{gcd}(p,g)=1$, the matrices are monomial, and we prove that characteristic polynomial of the Frobenius endomorphism $\chi(\lambda)\pmod p$ can be found in factored form in terms of Legendre polynomials by using permutation attached to the monomial matrix. As an application of our results, we list all the possible polynomials $\chi(\lambda)\pmod p$ for the case of $\operatorname{gcd}(p,g)=1$, $g\in\{1,\dots,7\}$ and the curve $C_1$ is over $\mathbb F_p$ or $\mathbb F_{p^2}$.
Keywords: hyperelliptic curve cryptography
Mots-clés : Cartier–Manin matrix, Legendre polynomials.
@article{PDMA_2017_10_a10,
     author = {S. A. Novoselov},
     title = {Hyperelliptic curves, {Cartier--Manin} matrices and {Legendre} polynomials},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {29--32},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/}
}
TY  - JOUR
AU  - S. A. Novoselov
TI  - Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 29
EP  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/
LA  - en
ID  - PDMA_2017_10_a10
ER  - 
%0 Journal Article
%A S. A. Novoselov
%T Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 29-32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/
%G en
%F PDMA_2017_10_a10
S. A. Novoselov. Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 29-32. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/

[1] Koblitz N., “Hyperelliptic cryptosystems”, J. Cryptology, 1:3 (1989), 139–150 | DOI | MR | Zbl

[2] Manin Y. I., “The Hasse–Witt matrix of an algebraic curve”, Izv. Akad. Nauk USSR, Ser. Mat., 25:1 (1961), 153–172 (in Russian) | MR | Zbl

[3] Bostan A., Gaudry P., Schost E., “Linear recurrences with polynomial coefficients and application to integer factorization and Cartier–Manin operator”, SIAM J. Comput., 36:6 (2007), 1777–1806 | DOI | MR | Zbl

[4] Harvey D., Sutherland A. V., “Hasse–Witt matrices of hyperelliptic curves in average polynomial time”, LMS J. Comput. Math., 17:A (2014), 257–273 | DOI | MR

[5] Yui N., “Jacobi quartics, Legendre polynomials and formal groups”, Lecture Notes in Mathematics, 1326, 1988, 182–215 | DOI | MR | Zbl

[6] Miller L., “The Hasse–Witt matrix of special projective varieties”, Pacific J. Math., 43:2 (1972), 443–455 | DOI | MR | Zbl

[7] Brillhart J., Morton P., “Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial”, J. Number Theory, 106:1 (2004), 79–111 | DOI | MR | Zbl

[8] Carlitz L., “Congruence properties of the polynomials of Hermite, Laguerre and Legendre”, Mathematische Zeitschrift, 59 (1953), 474–483 | DOI | MR

[9] Yui N., “On the Jacobian varieties of hyperelliptic curves over fields of characteristic $p>2$”, J. Algebra, 52:2 (1978), 378–410 | DOI | MR | Zbl