Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 29-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the hyperelliptic curves of the form $C_1\colon y^2=x^{2g+1}+ax^{g+1}+bx$ and $C_2\colon y^2=x^{2g+2}+ax^{g+1}+b$ over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. We transform these curves to the form $C_{1,\rho}\colon y^2=x^{2g+1}-2\rho x^{g+1}+x$ and $C_{2,\rho}\colon y^2=x^{2g+2}-2\rho x^{g+1}+1$ and prove that the coefficients of corresponding Cartier–Manin matrices are Legendre polynomials. As a consequence, the matrices are centrosymmetric and, therefore, it's enough to compute a half of coefficients to compute the matrix. Moreover, they are equivalent to block-diagonal matrices under transformation of the form $S^{(p)}WS^{-1}$. In the case of $\operatorname{gcd}(p,g)=1$, the matrices are monomial, and we prove that characteristic polynomial of the Frobenius endomorphism $\chi(\lambda)\pmod p$ can be found in factored form in terms of Legendre polynomials by using permutation attached to the monomial matrix. As an application of our results, we list all the possible polynomials $\chi(\lambda)\pmod p$ for the case of $\operatorname{gcd}(p,g)=1$, $g\in\{1,\dots,7\}$ and the curve $C_1$ is over $\mathbb F_p$ or $\mathbb F_{p^2}$.
Keywords: hyperelliptic curve cryptography
Mots-clés : Cartier–Manin matrix, Legendre polynomials.
@article{PDMA_2017_10_a10,
     author = {S. A. Novoselov},
     title = {Hyperelliptic curves, {Cartier--Manin} matrices and {Legendre} polynomials},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {29--32},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/}
}
TY  - JOUR
AU  - S. A. Novoselov
TI  - Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 29
EP  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/
LA  - en
ID  - PDMA_2017_10_a10
ER  - 
%0 Journal Article
%A S. A. Novoselov
%T Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 29-32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/
%G en
%F PDMA_2017_10_a10
S. A. Novoselov. Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 29-32. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a10/