Characterization of linear transformations defined by Finite Field Hadamard Matrices and circulant matrices
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 10-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider general and cryptographic properties of circulant matrices and Finite Field Hadamard Matrices. We describe invariant subspaces of linear transformations defined by Finite Field Hadamard Matrices and construct a class of invariant subspaces for circulant matrices.
Keywords: invariant subspaces, Finite Field Hadamard Matrices
Mots-clés : circulant matrices.
@article{PDMA_2017_10_a1,
     author = {A. V. Volgin and G. V. Kryuchkov},
     title = {Characterization of linear transformations defined by {Finite} {Field} {Hadamard} {Matrices} and circulant matrices},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {10--11},
     year = {2017},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a1/}
}
TY  - JOUR
AU  - A. V. Volgin
AU  - G. V. Kryuchkov
TI  - Characterization of linear transformations defined by Finite Field Hadamard Matrices and circulant matrices
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 10
EP  - 11
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a1/
LA  - ru
ID  - PDMA_2017_10_a1
ER  - 
%0 Journal Article
%A A. V. Volgin
%A G. V. Kryuchkov
%T Characterization of linear transformations defined by Finite Field Hadamard Matrices and circulant matrices
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 10-11
%N 10
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a1/
%G ru
%F PDMA_2017_10_a1
A. V. Volgin; G. V. Kryuchkov. Characterization of linear transformations defined by Finite Field Hadamard Matrices and circulant matrices. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 10-11. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a1/

[1] Barreto P. S. L. M., Rijmen V., The KHAZAD Legacy-Level Block Cipher, Submission to the NESSIE Project, , 2000 https://www.researchgate.net/publication/228924670_The_Khazad_legacy-level_block_cipher

[2] Biryukov A., “Analysis of involutional ciphers: Khazad and Anubis”, Intern. Workshop Fast Software Encryption, Springer, Berlin–Heidelberg, 2003, 45–53 | Zbl

[3] Daemon J., Rijmen V., “The Rijndael block cipher: AES proposal”, First AES Candidate Conf., AES1 (Ventura, California, August 20–22, 1998), 343–348

[4] Barreto P. S. L. M., Rijmen V., “The Whirlpool hashing function”, First open NESSIE Workshop, 13, Leuven, Belgium, 2000, 14

[5] Pogorelov B. A., Pudovkina M. A., “Kombinatornaya kharakterizatsiya XL-sloev”, Matematicheskie voprosy kriptografii, 4:3 (2013), 99–129

[6] Burov D. A., Pogorelov B. A., “An attack on 6 rounds of Khazad”, Matematicheskie voprosy kriptografii, 7:2 (2016), 35–46 | MR

[7] Leander G. et al., “A cryptanalysis of PRINTcipher: the invariant subspace attack”, Ann. Cryptology Conf., Springer, Berlin–Heidelberg, 2011, 206–221 | MR | Zbl

[8] Gupta K. C., Ray I. G., “On constructions of involutory MDS matrices”, Intern. Conf. Cryptology in Africa, Springer, Berlin–Heidelberg, 2013, 43–60 | MR | Zbl

[9] Sakall M. T., Akleylek S., Aslan B., et al., “On the construction of $20\times20$ and $24\times24$ binary matrices with good implementation properties for lightweight block ciphers and hash functions”, Mathematical Problems in Engineering, 2014 (2014), Article ID 540253, 12 pp. | MR | Zbl

[10] Gray M., “Toeplitz and circulant matrices: a review”, Foundations and Trends in Communications and Information Theory, 2:3 (2006), 155–239 | DOI