On differential equivalence of quadratic APN functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 21-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vectorial Boolean function $F\colon\mathbb F_2^n\to\mathbb F_2^n$ is called almost perfect nonlinear (APN) if the equation $F(x)+F(x+a)=b$ has at most $2$ solutions for all vectors $a,b\in\mathbb F_2^n$, where $a$ is nonzero. For a given $F$, an associated Boolean function $\gamma_F(a,b)$ in $2n$ variables is defined so that it takes value $1$ iff $a$ is nonzero and the equation $F(x)+F(x+a)=b$ has solutions. We introduce the notion of differentially equivalent functions as vectorial functions that have equal associated Boolean functions. The problem to describe the differential equivalence class of a given APN function is very interesting since the answer can potentially lead to some new constructions of APN functions. We start analyzing this problem with the consideration of affine functions $A$ such that a quadratic APN function $F$ and $F+A$ are differentially equivalent functions. We completely describe these affine functions $A$ for an arbitrary APN Gold function $F$. Computational results for known quadratic APN functions in small number of variables $(2,\dots,8)$ are presented.
Keywords: vectorial Boolean functions, almost perfect nonlinear functions, differential equivalence.
@article{PDMA_2016_9_a7,
     author = {A. A. Gorodilova},
     title = {On differential equivalence of quadratic {APN} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {21--24},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a7/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - On differential equivalence of quadratic APN functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 21
EP  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a7/
LA  - ru
ID  - PDMA_2016_9_a7
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T On differential equivalence of quadratic APN functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 21-24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a7/
%G ru
%F PDMA_2016_9_a7
A. A. Gorodilova. On differential equivalence of quadratic APN functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 21-24. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a7/

[1] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20

[2] Pott A., “Almost perfect and planar functions”, Des. Codes Cryptogr., 78 (2016), 141–195 | DOI | MR | Zbl

[3] Carlet C., “Open questions on nonlinearity and on APN functions”, Arithmetic of Finite Fields, LNCS, 9061, 2015, 83–107 | MR | Zbl

[4] Glukhov M. M., “O matritsakh perekhodov raznostei pri ispolzovanii nekotorykh modulyarnykh grupp”, Matem. vopr. kriptograf., 4:4 (2013), 27–47

[5] Sachkov V. N., “Kombinatornye svoistva differentsialno 2-ravnomernykh podstanovok”, Matem. vopr. kriptograf., 6:1 (2015), 159–179

[6] Gorodilova A. A., “O peresechenii mnozhestv znachenii proizvodnykh APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 25–27