On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 16-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Jevons group is the exponential group $S_2\uparrow S_n$. It is generated by the $(n\times n)$-matrices over $\operatorname{GF}(2)$ and the translation group on the $n$-dimensional vector space $V_n$ over $\operatorname{GF}(2)$. For a permutation group $G$ on $V_n$ being an overgraph of $S_2\uparrow S_n$, an orbital of $G$ is an orbit of $G$ in its natural action on $V_n\times V_n$. The orbital graph associated with an orbital $\Gamma$ is the graph with the vertex set $V_n$ and the edge set $\Gamma$. In this paper, we classify distance-transitive orbital graphs of overgroups of the Jevons group $S_2\uparrow S_n$ and show that some of them are isomorphic to the following graphs: the complete graph $K_{2^n}$, the complete bipartite graph $K_{2^{n-1},2^{n-1}}$, the halved $(n+1)$-cube, the folded $(n+1)$-cube, alternating forms graphs, the Taylor graph, the Hadamard graph.
Keywords: orbital graph, distance-transitive graph, Hamming graph.
Mots-clés : Jevons group
@article{PDMA_2016_9_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On the classification of distance-transitive orbital graphs of overgroups of the {Jevons} group},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {16--18},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 16
EP  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/
LA  - ru
ID  - PDMA_2016_9_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 16-18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/
%G ru
%F PDMA_2016_9_a5
B. A. Pogorelov; M. A. Pudovkina. On the classification of distance-transitive orbital graphs of overgroups of the Jevons group. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 16-18. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/

[1] Bannai E., Ito T., Algebraicheskaya kombinatorika, Mir, M., 1987 | MR

[2] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, 2006, 190–219

[3] Pogorelov B. A., Pudovkina M. A., “Podmetriki metriki Khemminga i preobrazovaniya, rasprostranyayuschie iskazheniya v zadannoe chislo raz”, Trudy po diskretnoi matematike, 10, 2007, 202–238

[4] Pogorelov B. A., Pudovkina M. A., “Podmetriki Khemminga i ikh gruppy izometrii”, Trudy po diskretnoi matematike, 11, no. 2, 2008, 147–191

[5] Pogorelov B. A., Pudovkina M. A., “Svoistva grafov orbitalov nadgrupp gruppy Dzhevonsa”, Matematicheskie voprosy kriptografii, 1:1 (2010), 55–83

[6] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer Verlag, 1989 | MR | Zbl

[7] Praeger C. E., Saxl J., Yokoyama K., “Distance transitive graphs and finite simple groups”, Proc. London Math. Soc., 55 (1987), 1–21 | DOI | MR | Zbl

[8] Ivanov A. A., “Distance-transitive graphs and their classification”, Investigations in Algebraic Theory of Combinatorial Objects, eds. I. A. Faradzev et al., Springer Science + Business Media, Dordrecht, 1994, 283–378 | DOI | MR

[9] Cohen A. M., “Distance-transitive graphs”, Encycloped. Math. Applicat., 102 (2004), 222–249 | Zbl

[10] Van Bon J., “Finite primitive distance-transitive graphs”, European J. Combinatorics, 28 (2007), 517–532 | DOI | MR | Zbl

[11] Liebeck M. W., Saxl J., “The finite primitive permutation groups of rank three”, Bull. London Math. Soc., 18 (1986), 165–172 | DOI | MR | Zbl