On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 16-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The Jevons group is the exponential group $S_2\uparrow S_n$. It is generated by the $(n\times n)$-matrices over $\operatorname{GF}(2)$ and the translation group on the $n$-dimensional vector space $V_n$ over $\operatorname{GF}(2)$. For a permutation group $G$ on $V_n$ being an overgraph of $S_2\uparrow S_n$, an orbital of $G$ is an orbit of $G$ in its natural action on $V_n\times V_n$. The orbital graph associated with an orbital $\Gamma$ is the graph with the vertex set $V_n$ and the edge set $\Gamma$. In this paper, we classify distance-transitive orbital graphs of overgroups of the Jevons group $S_2\uparrow S_n$ and show that some of them are isomorphic to the following graphs: the complete graph $K_{2^n}$, the complete bipartite graph $K_{2^{n-1},2^{n-1}}$, the halved $(n+1)$-cube, the folded $(n+1)$-cube, alternating forms graphs, the Taylor graph, the Hadamard graph.
Keywords: orbital graph, distance-transitive graph, Hamming graph.
Mots-clés : Jevons group
@article{PDMA_2016_9_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On the classification of distance-transitive orbital graphs of overgroups of the {Jevons} group},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {16--18},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 16
EP  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/
LA  - ru
ID  - PDMA_2016_9_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 16-18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/
%G ru
%F PDMA_2016_9_a5
B. A. Pogorelov; M. A. Pudovkina. On the classification of distance-transitive orbital graphs of overgroups of the Jevons group. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 16-18. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/