On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 16-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The Jevons group is the exponential group $S_2\uparrow S_n$. It is generated by the $(n\times n)$-matrices over $\operatorname{GF}(2)$ and the translation group on the $n$-dimensional vector space $V_n$ over $\operatorname{GF}(2)$. For a permutation group $G$ on $V_n$ being an overgraph of $S_2\uparrow S_n$, an orbital of $G$ is an orbit of $G$ in its natural action on $V_n\times V_n$. The orbital graph associated with an orbital $\Gamma$ is the graph with the vertex set $V_n$ and the edge set $\Gamma$. In this paper, we classify distance-transitive orbital graphs of overgroups of the Jevons group $S_2\uparrow S_n$ and show that some of them are isomorphic to the following graphs: the complete graph $K_{2^n}$, the complete bipartite graph $K_{2^{n-1},2^{n-1}}$, the halved $(n+1)$-cube, the folded $(n+1)$-cube, alternating forms graphs, the Taylor graph, the Hadamard graph.
Keywords:
orbital graph, distance-transitive graph, Hamming graph.
Mots-clés : Jevons group
Mots-clés : Jevons group
@article{PDMA_2016_9_a5,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {On the classification of distance-transitive orbital graphs of overgroups of the {Jevons} group},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {16--18},
publisher = {mathdoc},
number = {9},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/}
}
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - On the classification of distance-transitive orbital graphs of overgroups of the Jevons group JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 16 EP - 18 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/ LA - ru ID - PDMA_2016_9_a5 ER -
%0 Journal Article %A B. A. Pogorelov %A M. A. Pudovkina %T On the classification of distance-transitive orbital graphs of overgroups of the Jevons group %J Prikladnaya Diskretnaya Matematika. Supplement %D 2016 %P 16-18 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/ %G ru %F PDMA_2016_9_a5
B. A. Pogorelov; M. A. Pudovkina. On the classification of distance-transitive orbital graphs of overgroups of the Jevons group. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 16-18. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a5/