On attractors in finite dynamic systems of complete graphs orientations
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 112-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite dynamic systems of complete graphs orientations are considered. The states of such a system $S=(\Gamma_{K_n},\alpha)$, $n>1$, are all possible orientations $G$ of the complete graph $K_n$, and evolutionary function $\alpha$ transforms a given state $G$ by reversing all arcs in $G$ that enter into sinks, and there are no other differences between the given ($G$) and the next ($\alpha(G)$) states. The following criterion for belonging states to attractors in $S$ is given: a state $G$ belongs to an attractor if and only if it hasn't a sink or its indegrees vector is a permutation of numbers $0,1,\dots,n-1$. All attractors in $S$ are the attractors of length $1$, each of which consists of states without sinks, and the attractors of length $n$, each of which consists of states with indegrees vectors being permutations of numbers $0,1,\dots,n-1$. Any such an attractor represents a circuit, for every state $G$ in which if the indegrees vector of $G$ is $(d^-(v_1),d^-(v_2),\dots,d^-(v_n))$, then the indegrees vector of $\alpha(G)$ is $(d^-(v_1)+1,d^-(v_2)+1,\dots,d^-(v_n)+1)$, where the addition is calculated modulo $n$. Note that in system $S$, the number of attractors of length $n$ is equal to $(n-1)!$ and the number of states belonging to them is equal to $n!$.
Keywords: attractor, complete graph, evolutionary function, finite dynamic system, graph
Mots-clés : graph orientation.
@article{PDMA_2016_9_a43,
     author = {A. V. Zharkova},
     title = {On attractors in finite dynamic systems of complete graphs orientations},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {112--114},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a43/}
}
TY  - JOUR
AU  - A. V. Zharkova
TI  - On attractors in finite dynamic systems of complete graphs orientations
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 112
EP  - 114
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a43/
LA  - ru
ID  - PDMA_2016_9_a43
ER  - 
%0 Journal Article
%A A. V. Zharkova
%T On attractors in finite dynamic systems of complete graphs orientations
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 112-114
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a43/
%G ru
%F PDMA_2016_9_a43
A. V. Zharkova. On attractors in finite dynamic systems of complete graphs orientations. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 112-114. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a43/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997 | MR

[2] Vlasova A. V., Issledovanie evolyutsionnykh parametrov v dinamicheskikh sistemakh dvoichnykh vektorov, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2009614409, vydannoe Rospatentom. Zayavka No 2009613140. Data postupleniya 22 iyunya 2009 g. Zaregistrirovano v Reestre programm dlya EVM 20 avgusta 2009 g.

[3] Vlasova A. V., “Attraktory konechnykh dinamicheskikh sistem, assotsiirovannykh s tsepyami i tsiklami”, Sb. tez. dokl. konf. molodykh uchenykh, Vyp. 1, SPbGU ITMO, SPb., 2011, 70–71

[4] Zharkova A. V., “Kolichestvo attraktorov v dinamicheskikh sistemakh, assotsiirovannykh s tsiklami”, Matem. zametki, 95:4 (2014), 529–537 | DOI | MR | Zbl

[5] Zharkova A. V., “Attraktory v konechnykh dinamicheskikh sistemakh dvoichnykh vektorov, assotsiirovannykh s orientatsiyami palm”, Prikladnaya diskretnaya matematika, 2014, no. 3(25), 58–67

[6] Barbosa V. C., An atlas of edge-reversal dynamics, Chapman Hall/CRC, London, 2001 | MR | Zbl