Enumeration of labelled flower wheel graphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 109-110
Cet article a éte moissonné depuis la source Math-Net.Ru
The exact formula is obtained for the number of labelled flower wheel graphs with the given numbers of vertices and petals.
Keywords:
rooted graph, wheel graph, flower wheel graph.
@article{PDMA_2016_9_a41,
author = {V. A. Voblyi and A. K. Meleshko},
title = {Enumeration of labelled flower wheel graphs},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {109--110},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a41/}
}
V. A. Voblyi; A. K. Meleshko. Enumeration of labelled flower wheel graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 109-110. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a41/
[1] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977 | MR
[2] Bhatti A. A., Nisar A., Kanwal M., “Radio number of wheel like graphs”, Int. J. Graph Theory in Wireless ad hoc Networks and Sensor Networks, 3:4 (2011), 39–57 | DOI
[3] Brankovic L., Lopez N., Miller M., Sebe F., “Triangle randomization for social network data anonymization”, Ars Math. Contemporanea, 7:2 (2014), 461–477 | MR | Zbl
[4] Jin Y.-L., “Enumeration of labelled connected graphs and Euler graphs with only one cut vertex”, Yokohama Math. J., 45 (1977), 125–134 | MR
[5] Selkow S. M., “The enumeration of labeled graphs by number of cutpoints”, Discr. Math., 185 (1998), 183–191 | DOI | MR | Zbl