On groups generated by mixed type permutations and key addition groups
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 14-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Three groups are often used as key addition groups in iterated block ciphers: $V_n^+$, $\mathbb Z_{2^n}^+$ and $\mathbb Z_{2^n+1}^\odot$. They are the regular permutation representations, respectively, of the group of vector key addition, of the additive group of the residue ring $\mathbb Z_{2^n}$, and of the multiplicative group of the residue ring $\mathbb Z_{2^n+1}$, where $2^n+1$ is a prime number. In this paper, we describe some properties of the extensions of the group ${G_n}=\langle V_n^+,\mathbb Z_{2^n}^+\rangle$ by transformations and groups related to cryptographic applications. The groups $\mathbb Z_{2^d}^+ \times V_{n-d}^+$, $V_{n-d}^+\times\mathbb Z_{2^d}^+$ and a pseudoinverse permutation of the field $\operatorname{GF}(2^n)$ or the Galois ring $\operatorname{GR}(2^{md},2^m)$ are examples of such groups and transformations.
Keywords:
key addition group, additive regular group, wreath product, multiplicative group of the residue ring, Galois ring.
@article{PDMA_2016_9_a4,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {On groups generated by mixed type permutations and key addition groups},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {14--16},
publisher = {mathdoc},
number = {9},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a4/}
}
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - On groups generated by mixed type permutations and key addition groups JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 14 EP - 16 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a4/ LA - ru ID - PDMA_2016_9_a4 ER -
B. A. Pogorelov; M. A. Pudovkina. On groups generated by mixed type permutations and key addition groups. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 14-16. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a4/