On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is called $1$-vertex-hamiltonian ($1$-edge-hamiltonian) one, if it becomes Hamiltonian after deleting any its vertex (edge). $1$-vertex-hamiltonian ($1$-edge-hamilton) graph is optimal if it has the minimum number of edges among all $1$-vertex-hamiltonian ($1$-edge-hamiltonian) graphs with the same number of vertices. In the paper, the previous data on the number of optimal $1$-vertex- and $1$-edge-hamiltonian graphs with the number of vertices up to $26$ are verified, and new data for $28$-vertex graphs are given.
Keywords: optimal $1$-hamiltonian graph, minimal $1$-extension of cycle, fault-tolerance.
@article{PDMA_2016_9_a39,
     author = {M. B. Abrosimov and S. A. Suhov},
     title = {On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {103--105},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - S. A. Suhov
TI  - On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 103
EP  - 105
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/
LA  - ru
ID  - PDMA_2016_9_a39
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A S. A. Suhov
%T On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 103-105
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/
%G ru
%F PDMA_2016_9_a39
M. B. Abrosimov; S. A. Suhov. On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/