Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2016_9_a39, author = {M. B. Abrosimov and S. A. Suhov}, title = {On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {103--105}, publisher = {mathdoc}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/} }
TY - JOUR AU - M. B. Abrosimov AU - S. A. Suhov TI - On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 103 EP - 105 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/ LA - ru ID - PDMA_2016_9_a39 ER -
%0 Journal Article %A M. B. Abrosimov %A S. A. Suhov %T On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$ %J Prikladnaya Diskretnaya Matematika. Supplement %D 2016 %P 103-105 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/ %G ru %F PDMA_2016_9_a39
M. B. Abrosimov; S. A. Suhov. On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[3] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Mukhopadhyaya K., Sinha B. P., “Hamiltonian graphs with minimum number of edges for fault-tolerant topologies”, Inform. Process. Lett., 44 (1992), 95–99 | DOI | MR | Zbl
[5] Hsu L. H., Lin C. K., Graph Theory and Interconnection Networks, CRC Press, 2009 | MR | Zbl
[6] Abrosimov M. B., “O neizomorfnykh optimalnykh 1-otkazoustoichivykh realizatsiyakh nekotorykh grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 3, SGU, Saratov, 2000, 3–10
[7] Abrosimov M. B., “O neizomorfnykh minimalnykh rebernykh 1-rasshireniyakh grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 6, SGU, Saratov, 2004, 3–9
[8] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012
[9] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl
[10] Abrosimov M. B., Minimalnye vershinnye rasshireniya tsiklov s chislom vershin ne bolee odinnadtsati, SGU, Saratov, 2001, 17 pp.
[11] Abrosimov M. B., Kuznetsov N. A., “O kolichestve minimalnykh vershinnykh i rëbernykh 1-racshirenii tsiklov s chislom vershin do 17”, Prikladnaya diskretnaya matematika. Prilozhenie, 2012, no. 5, 84–86
[12] Brinkman G., Abrosimov M. B., “O kolichestve minimalnykh racshirenii tsiklov s chislom vershin do 26 i 28”, Diskretnaya matematika, teoriya grafov i ikh prilozheniya, Tez. dokl. Mezhdunar. nauch. konf. (Minsk, 11–14 noyabrya 2013 g.), Institut matematiki NAN Belarusi, Mn., 2013, 7–9
[13] Brinkmann G., “Fast generation of cubic graphs”, J. Graph Theory, 23 (1996), 139–140 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[14] Brinkmann G., Goedgebeur J., McKay B. D., “Generation of cubic graphs”, Discr. Math. Theor. Comp. Sci., 13:2 (2011), 69–80 | MR | Zbl
[15] Grund R., “Konstruktion schlichter Graphen mit gegebener Gradpartition”, Bayreuther Mathematische Schriften, 44 (1993), 73–104 | MR | Zbl
[16] Sukhov S. A., DSR Generator, Svid. o gos. registratsii programmy dlya EVM No 2016610073. Zaregistrirovana v Reestre programm dlya EVM 11 yanvarya 2016 g.