On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph is called $1$-vertex-hamiltonian ($1$-edge-hamiltonian) one, if it becomes Hamiltonian after deleting any its vertex (edge). $1$-vertex-hamiltonian ($1$-edge-hamilton) graph is optimal if it has the minimum number of edges among all $1$-vertex-hamiltonian ($1$-edge-hamiltonian) graphs with the same number of vertices. In the paper, the previous data on the number of optimal $1$-vertex- and $1$-edge-hamiltonian graphs with the number of vertices up to $26$ are verified, and new data for $28$-vertex graphs are given.
Keywords:
optimal $1$-hamiltonian graph, minimal $1$-extension of cycle, fault-tolerance.
@article{PDMA_2016_9_a39,
author = {M. B. Abrosimov and S. A. Suhov},
title = {On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {103--105},
publisher = {mathdoc},
number = {9},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/}
}
TY - JOUR AU - M. B. Abrosimov AU - S. A. Suhov TI - On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 103 EP - 105 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/ LA - ru ID - PDMA_2016_9_a39 ER -
%0 Journal Article %A M. B. Abrosimov %A S. A. Suhov %T On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$ %J Prikladnaya Diskretnaya Matematika. Supplement %D 2016 %P 103-105 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/ %G ru %F PDMA_2016_9_a39
M. B. Abrosimov; S. A. Suhov. On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/