On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is called $1$-vertex-hamiltonian ($1$-edge-hamiltonian) one, if it becomes Hamiltonian after deleting any its vertex (edge). $1$-vertex-hamiltonian ($1$-edge-hamilton) graph is optimal if it has the minimum number of edges among all $1$-vertex-hamiltonian ($1$-edge-hamiltonian) graphs with the same number of vertices. In the paper, the previous data on the number of optimal $1$-vertex- and $1$-edge-hamiltonian graphs with the number of vertices up to $26$ are verified, and new data for $28$-vertex graphs are given.
Keywords: optimal $1$-hamiltonian graph, minimal $1$-extension of cycle, fault-tolerance.
@article{PDMA_2016_9_a39,
     author = {M. B. Abrosimov and S. A. Suhov},
     title = {On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {103--105},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - S. A. Suhov
TI  - On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 103
EP  - 105
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/
LA  - ru
ID  - PDMA_2016_9_a39
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A S. A. Suhov
%T On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 103-105
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/
%G ru
%F PDMA_2016_9_a39
M. B. Abrosimov; S. A. Suhov. On the number of optimal $1$-hamiltonian graphs with the number of vertices up to~$26$ and~$28$. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 103-105. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a39/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl

[2] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl

[3] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] Mukhopadhyaya K., Sinha B. P., “Hamiltonian graphs with minimum number of edges for fault-tolerant topologies”, Inform. Process. Lett., 44 (1992), 95–99 | DOI | MR | Zbl

[5] Hsu L. H., Lin C. K., Graph Theory and Interconnection Networks, CRC Press, 2009 | MR | Zbl

[6] Abrosimov M. B., “O neizomorfnykh optimalnykh 1-otkazoustoichivykh realizatsiyakh nekotorykh grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 3, SGU, Saratov, 2000, 3–10

[7] Abrosimov M. B., “O neizomorfnykh minimalnykh rebernykh 1-rasshireniyakh grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 6, SGU, Saratov, 2004, 3–9

[8] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012

[9] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl

[10] Abrosimov M. B., Minimalnye vershinnye rasshireniya tsiklov s chislom vershin ne bolee odinnadtsati, SGU, Saratov, 2001, 17 pp.

[11] Abrosimov M. B., Kuznetsov N. A., “O kolichestve minimalnykh vershinnykh i rëbernykh 1-racshirenii tsiklov s chislom vershin do 17”, Prikladnaya diskretnaya matematika. Prilozhenie, 2012, no. 5, 84–86

[12] Brinkman G., Abrosimov M. B., “O kolichestve minimalnykh racshirenii tsiklov s chislom vershin do 26 i 28”, Diskretnaya matematika, teoriya grafov i ikh prilozheniya, Tez. dokl. Mezhdunar. nauch. konf. (Minsk, 11–14 noyabrya 2013 g.), Institut matematiki NAN Belarusi, Mn., 2013, 7–9

[13] Brinkmann G., “Fast generation of cubic graphs”, J. Graph Theory, 23 (1996), 139–140 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[14] Brinkmann G., Goedgebeur J., McKay B. D., “Generation of cubic graphs”, Discr. Math. Theor. Comp. Sci., 13:2 (2011), 69–80 | MR | Zbl

[15] Grund R., “Konstruktion schlichter Graphen mit gegebener Gradpartition”, Bayreuther Mathematische Schriften, 44 (1993), 73–104 | MR | Zbl

[16] Sukhov S. A., DSR Generator, Svid. o gos. registratsii programmy dlya EVM No 2016610073. Zaregistrirovana v Reestre programm dlya EVM 11 yanvarya 2016 g.