Cryptanalysis of the McEliece PKC based on $(k-1)$-Reed--Muller subcodes
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe two types of McEliece cryptosystems based on some Reed–Muller subcodes and study the question of equivalent keys for these cryptosystems. A method for reduction of one cryptosystem to the another is obtained. Also, we show that these cryptosystems based on Reed–Muller subcode with the most widely used parameters can be attacked with the authors' algorithm.
Keywords: McEliece cryptosystem, Reed–Muller subcode, automorphism of Reed–Muller code, Schur product codes, square of code.
@article{PDMA_2016_9_a28,
     author = {I. V. Chizhov and M. A. Borodin},
     title = {Cryptanalysis of the {McEliece} {PKC} based on $(k-1)${-Reed--Muller} subcodes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {73--75},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a28/}
}
TY  - JOUR
AU  - I. V. Chizhov
AU  - M. A. Borodin
TI  - Cryptanalysis of the McEliece PKC based on $(k-1)$-Reed--Muller subcodes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 73
EP  - 75
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a28/
LA  - ru
ID  - PDMA_2016_9_a28
ER  - 
%0 Journal Article
%A I. V. Chizhov
%A M. A. Borodin
%T Cryptanalysis of the McEliece PKC based on $(k-1)$-Reed--Muller subcodes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 73-75
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a28/
%G ru
%F PDMA_2016_9_a28
I. V. Chizhov; M. A. Borodin. Cryptanalysis of the McEliece PKC based on $(k-1)$-Reed--Muller subcodes. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 73-75. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a28/

[1] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | MR | Zbl

[2] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl

[3] Borodin M. A., Chizhov I. V., “Effektivnaya ataka na kriptosistemu Mak-Elisa, postroennuyu na osnove kodov Rida–Mallera”, Diskretnaya matematika, 26:1 (2014), 10–20 | DOI | MR | Zbl