Analogues of the Shannon theorem for non-minimal endomorphic perfect ciphers
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 62-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with some analogues of the Shannon's theorem for endomorphic perfect ciphers (which are absolutely immune against the ciphertext-only attack). Examples of the perfect and transitive ciphers, minimal by inclusion, are constructed.
Keywords: perfect ciphers, endomorphic ciphers, non-minimal ciphers.
@article{PDMA_2016_9_a24,
     author = {N. V. Medvedeva and S. S. Titov},
     title = {Analogues of the {Shannon} theorem for non-minimal endomorphic perfect ciphers},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {62--65},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a24/}
}
TY  - JOUR
AU  - N. V. Medvedeva
AU  - S. S. Titov
TI  - Analogues of the Shannon theorem for non-minimal endomorphic perfect ciphers
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 62
EP  - 65
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a24/
LA  - ru
ID  - PDMA_2016_9_a24
ER  - 
%0 Journal Article
%A N. V. Medvedeva
%A S. S. Titov
%T Analogues of the Shannon theorem for non-minimal endomorphic perfect ciphers
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 62-65
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a24/
%G ru
%F PDMA_2016_9_a24
N. V. Medvedeva; S. S. Titov. Analogues of the Shannon theorem for non-minimal endomorphic perfect ciphers. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 62-65. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a24/

[1] Shennon K., “Teoriya svyazi v sekretnykh sistemakh”, Raboty po teorii informatsii i kibernetike, Nauka, M., 1963, 333–402

[2] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, M., 2001

[3] Zubov A. Yu., Sovershennye shifry, Gelios ARV, M., 2003

[4] Medvedeva N. V., Titov S. S., “O neminimalnykh sovershennykh shifrakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 42–44

[5] Medvedeva N. V., Titov S. S., “Neendomorfnye sovershennye shifry s dvumya shifrvelichinami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 63–66

[6] Medvedeva N. V., Titov S. S., “Opisanie neendomorfnykh maksimalnykh sovershennykh shifrov s dvumya shifrvelichinami”, Prikladnaya diskretnaya matematika, 2015, no. 4(30), 43–55