Search of an information message in noisy code blocks at repeated data transmission
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 55-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The security model using the method of code noising is considered. It is assumed that the information blocks of length $k$ contain a fixed message $m$ of length $l\leq k$ on a fixed position $q$, $1\leq q\leq k-l+1$, and an observer gets noisy codewords of length $n$ through a binary symmetric channel with error probability $({1-\Delta})/2$, $0\Delta\leq1$. The aim of the observer is to find the unknown message $m$, when position $q$ is unknown, and the length $l$ is known. We propose a method for finding $m$ and obtain an estimate for a sufficient number of observed codewords needed to recover the message $m$ in this way.
Keywords: code noising, repeated data transmission.
@article{PDMA_2016_9_a21,
     author = {Y. V. Kosolapov and O. Y. Turchenko},
     title = {Search of an information message in noisy code blocks at repeated data transmission},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {55--57},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/}
}
TY  - JOUR
AU  - Y. V. Kosolapov
AU  - O. Y. Turchenko
TI  - Search of an information message in noisy code blocks at repeated data transmission
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 55
EP  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/
LA  - ru
ID  - PDMA_2016_9_a21
ER  - 
%0 Journal Article
%A Y. V. Kosolapov
%A O. Y. Turchenko
%T Search of an information message in noisy code blocks at repeated data transmission
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 55-57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/
%G ru
%F PDMA_2016_9_a21
Y. V. Kosolapov; O. Y. Turchenko. Search of an information message in noisy code blocks at repeated data transmission. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 55-57. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/

[1] Wyner A. D., “The wire-tap channel”, Bell Sys. Tech. J., 54 (1975), 1355–1387 | DOI | MR | Zbl

[2] Korzhik V. I., Yakovlev V. A., “Neasimptoticheskie otsenki effektivnosti kodovogo zashumleniya odnogo kanala”, Probl. peredachi inform., 17:4 (1981), 11–18 | MR | Zbl

[3] Ivanov V. A., “Statisticheskie metody otsenki effektivnosti kodovogo zashumleniya”, Trudy po diskretnoi matematike, 6, 2002, 48–63

[4] Chabot C., “Recognition of a code in a noisy environment”, Proc. IEEE ISIT, June, 2007, 2211–2215

[5] Yardi A. D., Vijayakumaran S., “Detecting linear block codes in noise using the GLRT”, Proc. IEEE Intern. Conf. Communications, ICC (Budapest, Hungary, June 9–13, 2013), 2013, 4895–4899