Search of an information message in noisy code blocks at repeated data transmission
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 55-57
Cet article a éte moissonné depuis la source Math-Net.Ru
The security model using the method of code noising is considered. It is assumed that the information blocks of length $k$ contain a fixed message $m$ of length $l\leq k$ on a fixed position $q$, $1\leq q\leq k-l+1$, and an observer gets noisy codewords of length $n$ through a binary symmetric channel with error probability $({1-\Delta})/2$, $0\Delta\leq1$. The aim of the observer is to find the unknown message $m$, when position $q$ is unknown, and the length $l$ is known. We propose a method for finding $m$ and obtain an estimate for a sufficient number of observed codewords needed to recover the message $m$ in this way.
Keywords:
code noising, repeated data transmission.
@article{PDMA_2016_9_a21,
author = {Y. V. Kosolapov and O. Y. Turchenko},
title = {Search of an information message in noisy code blocks at repeated data transmission},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {55--57},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/}
}
TY - JOUR AU - Y. V. Kosolapov AU - O. Y. Turchenko TI - Search of an information message in noisy code blocks at repeated data transmission JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 55 EP - 57 IS - 9 UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/ LA - ru ID - PDMA_2016_9_a21 ER -
Y. V. Kosolapov; O. Y. Turchenko. Search of an information message in noisy code blocks at repeated data transmission. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 55-57. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a21/
[1] Wyner A. D., “The wire-tap channel”, Bell Sys. Tech. J., 54 (1975), 1355–1387 | DOI | MR | Zbl
[2] Korzhik V. I., Yakovlev V. A., “Neasimptoticheskie otsenki effektivnosti kodovogo zashumleniya odnogo kanala”, Probl. peredachi inform., 17:4 (1981), 11–18 | MR | Zbl
[3] Ivanov V. A., “Statisticheskie metody otsenki effektivnosti kodovogo zashumleniya”, Trudy po diskretnoi matematike, 6, 2002, 48–63
[4] Chabot C., “Recognition of a code in a noisy environment”, Proc. IEEE ISIT, June, 2007, 2211–2215
[5] Yardi A. D., Vijayakumaran S., “Detecting linear block codes in noise using the GLRT”, Proc. IEEE Intern. Conf. Communications, ICC (Budapest, Hungary, June 9–13, 2013), 2013, 4895–4899