On the group generated by the round functions of the block cipher Kuznechik
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 43-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the research areas for iterative block cyphers is to describe the properties of the group generated by the set of all partial round functions. Kuznechik is a new Russian block encryption standard. In this paper, we prove that the group generated by the set of all partial round functions of Kuznechik is alternating.
Keywords: “Kuznechik”, GOST R 34.12-2015, alternating group.
@article{PDMA_2016_9_a17,
     author = {V. V. Vlasova and M. A. Pudovkina},
     title = {On the group generated by the round functions of the block cipher {Kuznechik}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {43--45},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/}
}
TY  - JOUR
AU  - V. V. Vlasova
AU  - M. A. Pudovkina
TI  - On the group generated by the round functions of the block cipher Kuznechik
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 43
EP  - 45
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/
LA  - ru
ID  - PDMA_2016_9_a17
ER  - 
%0 Journal Article
%A V. V. Vlasova
%A M. A. Pudovkina
%T On the group generated by the round functions of the block cipher Kuznechik
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 43-45
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/
%G ru
%F PDMA_2016_9_a17
V. V. Vlasova; M. A. Pudovkina. On the group generated by the round functions of the block cipher Kuznechik. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 43-45. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/

[1] Wernsdorf R., “The round functions of RIJNDAEL generate the alternating group”, LNCS, 2365, 2002, 143–148 | Zbl

[2] Maslov A. C., “Ob usloviyakh porozhdeniya SA-podstanovkami znakoperemennoi gruppy”, Trudy instituta matematiki, 15:2 (2007), 58–68 | Zbl

[3] Caranti A., Dalla Volta F., Sala M., Villani F., Imprimitive permutation groups generated by the round functions of key-alternating block ciphers and truncated differential cryptanalysis, arXiv: math/0606022

[4] Caranti A., Dalla Volta F., Sala M., “An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher”, Designs, Codes and Cryptography, 52 (2009), 293–301 | DOI | MR | Zbl

[5] Glukhov M. M., Pogorelov B. A., “O nekotorykh primeneniyakh grupp v kriptografii”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konf. (MGU 28–29 oktyabrya 2004), MTsNMO, M., 2005, 19–31

[6] GOST R 34.122015, Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Blochnye shifry, Standartinform, M., 2015

[7] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR