On the group generated by the round functions of the block cipher Kuznechik
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 43-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the research areas for iterative block cyphers is to describe the properties of the group generated by the set of all partial round functions. Kuznechik is a new Russian block encryption standard. In this paper, we prove that the group generated by the set of all partial round functions of Kuznechik is alternating.
Keywords: “Kuznechik”, GOST R 34.12-2015, alternating group.
@article{PDMA_2016_9_a17,
     author = {V. V. Vlasova and M. A. Pudovkina},
     title = {On the group generated by the round functions of the block cipher {Kuznechik}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {43--45},
     year = {2016},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/}
}
TY  - JOUR
AU  - V. V. Vlasova
AU  - M. A. Pudovkina
TI  - On the group generated by the round functions of the block cipher Kuznechik
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 43
EP  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/
LA  - ru
ID  - PDMA_2016_9_a17
ER  - 
%0 Journal Article
%A V. V. Vlasova
%A M. A. Pudovkina
%T On the group generated by the round functions of the block cipher Kuznechik
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 43-45
%N 9
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/
%G ru
%F PDMA_2016_9_a17
V. V. Vlasova; M. A. Pudovkina. On the group generated by the round functions of the block cipher Kuznechik. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 43-45. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a17/

[1] Wernsdorf R., “The round functions of RIJNDAEL generate the alternating group”, LNCS, 2365, 2002, 143–148 | Zbl

[2] Maslov A. C., “Ob usloviyakh porozhdeniya SA-podstanovkami znakoperemennoi gruppy”, Trudy instituta matematiki, 15:2 (2007), 58–68 | Zbl

[3] Caranti A., Dalla Volta F., Sala M., Villani F., Imprimitive permutation groups generated by the round functions of key-alternating block ciphers and truncated differential cryptanalysis, arXiv: math/0606022

[4] Caranti A., Dalla Volta F., Sala M., “An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher”, Designs, Codes and Cryptography, 52 (2009), 293–301 | DOI | MR | Zbl

[5] Glukhov M. M., Pogorelov B. A., “O nekotorykh primeneniyakh grupp v kriptografii”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konf. (MGU 28–29 oktyabrya 2004), MTsNMO, M., 2005, 19–31

[6] GOST R 34.122015, Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Blochnye shifry, Standartinform, M., 2015

[7] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR