On the set of derivatives of a~Boolean bent function
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016).

Voir la notice de l'article provenant de la source Math-Net.Ru

Is it true that any balanced Boolean function in $n$ variables of degree less than $n/2$ is a derivative of a bent function in $n$ variables? We study this question in the case when $n$ is small.
Keywords: bent functions, derivative
Mots-clés : affine classification.
@article{PDMA_2016_9_a13,
     author = {N. N. Tokareva},
     title = {On the set of derivatives of {a~Boolean} bent function},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {35},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a13/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - On the set of derivatives of a~Boolean bent function
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 35
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a13/
LA  - ru
ID  - PDMA_2016_9_a13
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T On the set of derivatives of a~Boolean bent function
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 35
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a13/
%G ru
%F PDMA_2016_9_a13
N. N. Tokareva. On the set of derivatives of a~Boolean bent function. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016). http://geodesic.mathdoc.fr/item/PDMA_2016_9_a13/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press Elsevier, 2015, 220 pp. | MR