On the set of values for Hamming distance between self-dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 29-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Hamming distance between self-dual Maiorana–McFarland bent functions of the form $\langle x,\pi(y)\rangle\oplus h(y)$, where $\pi\in\operatorname{GL}(n/2,\mathbb Z_2)$, belongs to the set $\{2^{n-1},2^{n-1}(1\pm1/2),2^{n-1}(1\pm1/2^2),\dots,2^{n-1}(1\pm1/2^{n/2-1}),2^n\}$.
Keywords: Boolean function, bent function, Walsh–Hadamard transform, self-dual bent, Maiorana–McFarland bent function.
@article{PDMA_2016_9_a10,
     author = {A. V. Kutsenko},
     title = {On the set of values for {Hamming} distance between self-dual bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {29--30},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a10/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On the set of values for Hamming distance between self-dual bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 29
EP  - 30
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a10/
LA  - ru
ID  - PDMA_2016_9_a10
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On the set of values for Hamming distance between self-dual bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 29-30
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a10/
%G ru
%F PDMA_2016_9_a10
A. V. Kutsenko. On the set of values for Hamming distance between self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 29-30. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a10/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[3] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl

[4] Hou X., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63 (2012), 183–198 | DOI | MR | Zbl

[5] Feulner T., Sok L., Solé P., Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68 (2013), 395–406 | DOI | MR | Zbl