Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2016_9_a10, author = {A. V. Kutsenko}, title = {On the set of values for {Hamming} distance between self-dual bent functions}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {29--30}, publisher = {mathdoc}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a10/} }
A. V. Kutsenko. On the set of values for Hamming distance between self-dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 29-30. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a10/
[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl
[3] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl
[4] Hou X., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63 (2012), 183–198 | DOI | MR | Zbl
[5] Feulner T., Sok L., Solé P., Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68 (2013), 395–406 | DOI | MR | Zbl