Generalized Narayana polynomials and their $q$-analogues
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 6-8
Cet article a éte moissonné depuis la source Math-Net.Ru
Generating polynomials of the statistics $\mathrm{rise}$, $\mathrm{des}$ and $\mathrm{inv}$ are considered on the entered $312$-avoiding GS-permutations of an order $r\geq1$. It is shown that the polynomials of the statistics $\mathrm{rise}$ and $\mathrm{des}$ are some generalizations of the known Narayana polynomials. For the generalized Narayana polynomials, the inverse generating function, an algebraic equation for the generating function and a recursion relation with multiple convolutions are obtained. For the generating polynomials of pair $\mathrm{(des,inv)}$, an analogue of the obtained recursion relation and an equation for the generating function of these polynomials are found. Their particular case leads to the corresponding $q$-analogues of generalized Narayana polynomials.
Keywords:
$312$-avoiding GS-permutations, generalized Narayana polynomials, generating function, inverse function
Mots-clés : convolution, $q$-analogues.
Mots-clés : convolution, $q$-analogues.
@article{PDMA_2016_9_a0,
author = {L. N. Bondarenko and M. L. Sharapova},
title = {Generalized {Narayana} polynomials and their $q$-analogues},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {6--8},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a0/}
}
L. N. Bondarenko; M. L. Sharapova. Generalized Narayana polynomials and their $q$-analogues. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 6-8. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a0/
[1] Gessel I., Stanley R. P., “Stirling polynomials”, J. Comb. Theory Ser. A, 24 (1978), 24–33 | DOI | MR | Zbl
[2] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998, 703 pp.
[3] Bondarenko L. N., Sharapova M. L., “Parametricheskie kombinatornye zadachi i metody ikh issledovaniya”, Izvestiya vuzov. Povolzhskii region. Fiz.-mat. nauki, 2010, no. 4(16), 50–63
[4] Stenli R., Perechislitelnaya kombinatorika, v. 2, Mir, M., 2009, 768 pp. | MR
[5] Knut D., Iskusstvo programmirovaniya dlya EVM, v. 1, Mir, M., 1976, 720 pp.
[6] Fürlinger J., Hofbauer J., “$q$-Catalan numbers”, J. Comb. Theory Ser. A, 40 (1985), 248–264 | DOI | MR | Zbl