$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 17-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be an alphabet of plaintexts (ciphertexts) of iterated block ciphers and $(X,\otimes)$ be a regular abelian group. The group operation $\otimes$ defines the difference of a text pair. $\otimes$-Markov ciphers are defined as iterated ciphers of which round functions satisfy the condition that the differential probability is independent of the choice of plaintexts from $X$. For $\otimes$-Markov ciphers with independent round keys, the sequence of round differences forms a Markov chain. In this paper, we consider $\otimes$-Markov ciphers and a partition $\mathbf W=\{W_0,\dots,W_{r-1}\}$ with blocks being lumped states of the Markov chain. An $l$-round $\otimes$-Markov cipher is called $\otimes_{\mathbf W,\mathrm{ch}}$-markovian if the cipher and $\mathbf W$ satisfy the following condition: the block numbers sequence $j_0,\dots,j_l$ such that, for all $i\in\{0,\dots,l\}$, the $i^{th}$-round difference belongs to $W_{j_i}$ is a Markov chain. This definition can be also extended for permutations on $X$. For a partition $\mathbf W$ and differential probabilities of a round function of an $l$-round $\otimes$-Markov cipher, we get conditions that the cipher is $\otimes_{\mathbf W,\mathrm{ch}}$-markovian. We describe $\otimes_{\mathbf W,\mathrm{ch}}$-markovian permutations on $\mathbb Z_n$ based on an exponential operation and a logarithmic operation, which are defined on $\mathbb Z_n$ and $\mathrm{GF}(n+1)$.
Keywords:
Markov block cipher, truncated differential technique, exponential transformation.
Mots-clés : Markov chain
Mots-clés : Markov chain
@article{PDMA_2015_8_a5,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {17--19},
publisher = {mathdoc},
number = {8},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/}
}
TY - JOUR
AU - B. A. Pogorelov
AU - M. A. Pudovkina
TI - $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2015
SP - 17
EP - 19
IS - 8
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/
LA - ru
ID - PDMA_2015_8_a5
ER -
B. A. Pogorelov; M. A. Pudovkina. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 17-19. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/