$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 17-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an alphabet of plaintexts (ciphertexts) of iterated block ciphers and $(X,\otimes)$ be a regular abelian group. The group operation $\otimes$ defines the difference of a text pair. $\otimes$-Markov ciphers are defined as iterated ciphers of which round functions satisfy the condition that the differential probability is independent of the choice of plaintexts from $X$. For $\otimes$-Markov ciphers with independent round keys, the sequence of round differences forms a Markov chain. In this paper, we consider $\otimes$-Markov ciphers and a partition $\mathbf W=\{W_0,\dots,W_{r-1}\}$ with blocks being lumped states of the Markov chain. An $l$-round $\otimes$-Markov cipher is called $\otimes_{\mathbf W,\mathrm{ch}}$-markovian if the cipher and $\mathbf W$ satisfy the following condition: the block numbers sequence $j_0,\dots,j_l$ such that, for all $i\in\{0,\dots,l\}$, the $i^{th}$-round difference belongs to $W_{j_i}$ is a Markov chain. This definition can be also extended for permutations on $X$. For a partition $\mathbf W$ and differential probabilities of a round function of an $l$-round $\otimes$-Markov cipher, we get conditions that the cipher is $\otimes_{\mathbf W,\mathrm{ch}}$-markovian. We describe $\otimes_{\mathbf W,\mathrm{ch}}$-markovian permutations on $\mathbb Z_n$ based on an exponential operation and a logarithmic operation, which are defined on $\mathbb Z_n$ and $\mathrm{GF}(n+1)$.
Keywords: Markov block cipher, truncated differential technique, exponential transformation.
Mots-clés : Markov chain
@article{PDMA_2015_8_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {17--19},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 17
EP  - 19
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/
LA  - ru
ID  - PDMA_2015_8_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 17-19
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/
%G ru
%F PDMA_2015_8_a5
B. A. Pogorelov; M. A. Pudovkina. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 17-19. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a5/

[1] Lai X., Massey J. L., Murphy S., “Markov ciphers and differential cryptanalysis”, EUROCRYPT'1991, LNCS, 547, 1991, 17–38 | MR | Zbl

[2] Knudsen L. R., “Truncated and higher order differentials”, FSE'1995, LNCS, 1008, 1995, 196–211 | Zbl

[3] Matsui M., Tokita T., “Cryptanalysis of a reduced version of the block cipher E2”, FSE'1999, LNCS, 1636, 1999, 71–80 | Zbl

[4] Moriai S., Sugita M., Aoki K., Kanda M., “Security of E2 against truncated differential cryptanalysis”, SAC'1999, LNCS, 1758, 2000, 106–117 | Zbl

[5] Reichardt B., Wagner D., “Markov truncated differential cryptanalysis of Skipjack”, SAC'2002, LNCS, 2595, 2003, 110–128 | MR | Zbl

[6] Blondeau C., “Improbable differential from impossible differential: on the validity of the model”, INDOCRYPT'2013, LNCS, 8250, 2013, 149–160 | Zbl

[7] Massey J. L., “SAFER K-64: One year later”, FSE'1994, LNCS, 1008, 1995, 212–232

[8] Agievich S. V., Afonenko A. A., “Eksponentsialnye $s$-bloki”, Materialy konf. MaBit, MTsNMO, M., 2003, 127–130

[9] Shemyakina O. V., “Ob otsenke kharakteristik razbienii razlichnykh algebraicheskikh struktur”, Cb. trudov konf. IBRR-2011, SPOISU, SPb., 2011, 137