Perfect binary codes of infinite length
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 117-120
Voir la notice de l'article provenant de la source Math-Net.Ru
A subset $C$ of the infinite-dimensional Boolean cube $\{0,1\}^\mathbb N$ is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centres in $C$ are pairwise disjoint and their union covers the cube $\{0,1\}^\mathbb N$. A perfect binary code in the zero layer $\{0,1\}^\mathbb N_0$, consisting of all vectors of the cube $\{0,1\}^\mathbb N$ having finite supports, is defined similarly. It is proved that the cardinality of the set of all equivalence classes of perfect binary codes in the zero layer $\{0,1\}^\mathbb N_0$ is continuum. At the same time, the cardinality of the set of all equivalence classes of perfect binary codes in the whole cube $\{0,1\}^\mathbb N$ is hypercontinuum.
Keywords:
perfect binary codes, Hamming code, Hamming distance, continuum, hypercontinuum.
Mots-clés : Vasil'ev codes, equivalence classes
Mots-clés : Vasil'ev codes, equivalence classes
@article{PDMA_2015_8_a44,
author = {S. A. Malyugin},
title = {Perfect binary codes of infinite length},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {117--120},
publisher = {mathdoc},
number = {8},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a44/}
}
S. A. Malyugin. Perfect binary codes of infinite length. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 117-120. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a44/