Perfect binary codes of infinite length
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 117-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $C$ of the infinite-dimensional Boolean cube $\{0,1\}^\mathbb N$ is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centres in $C$ are pairwise disjoint and their union covers the cube $\{0,1\}^\mathbb N$. A perfect binary code in the zero layer $\{0,1\}^\mathbb N_0$, consisting of all vectors of the cube $\{0,1\}^\mathbb N$ having finite supports, is defined similarly. It is proved that the cardinality of the set of all equivalence classes of perfect binary codes in the zero layer $\{0,1\}^\mathbb N_0$ is continuum. At the same time, the cardinality of the set of all equivalence classes of perfect binary codes in the whole cube $\{0,1\}^\mathbb N$ is hypercontinuum.
Keywords: perfect binary codes, Hamming code, Hamming distance, continuum, hypercontinuum.
Mots-clés : Vasil'ev codes, equivalence classes
@article{PDMA_2015_8_a44,
     author = {S. A. Malyugin},
     title = {Perfect binary codes of infinite length},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {117--120},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a44/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - Perfect binary codes of infinite length
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 117
EP  - 120
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a44/
LA  - ru
ID  - PDMA_2015_8_a44
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T Perfect binary codes of infinite length
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 117-120
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a44/
%G ru
%F PDMA_2015_8_a44
S. A. Malyugin. Perfect binary codes of infinite length. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 117-120. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a44/

[1] Potapov V. N., “Beskonechnomernye kvazigruppy konechnykh poryadkov”, Matem. zametki, 93:3 (2013), 457–465 | DOI | MR

[2] Avgustinovich S. V., Soloveva F. I., “Postroenie sovershennykh dvoichnykh kodov posledovatelnymi sdvigami $\widetilde\alpha$-komponent”, Problemy peredachi informatsii, 33:3 (1997), 15–21 | MR | Zbl

[3] Romanov A. M., “O postroenii sovershennykh nelineinykh dvoichnykh kodov inversiei simvolov”, Diskret. analiz i issled. operatsii. Ser. 1, 4:1 (1997), 46–52 | MR | Zbl

[4] Phelps K. T., LeVan M. J., “Kernels of nonlinear Hamming codes”, Designs, Codes and Cryptogr., 6:3 (1995), 247–257 | DOI | MR | Zbl

[5] Solov'eva F. I., “Switchings and perfect codes”, Numbers, Information and Complexity, Kluwer Acad. Publ., Dordrecht, 2000, 311–324 | DOI | MR | Zbl

[6] Vasilev Yu. L., “O negruppovykh plotno upakovannykh kodakh”, Problemy kibernetiki, 8, Fizmatgiz, M., 1962, 75–78