Primitiveness conditions for systems of two graphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 113-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some sufficient conditions for primitiveness of two $n$-vertex digraphs system are obtained in the case when there are no acyclic vertices in one of this two graphs, particularly when it contains a Hamiltonian cycle. Also, an exponent estimate for the two digraphs system is obtained in terms of the exponent of their product. The results can be used for evaluation of the mixing properties of iterative functions based on the transformation branching into two given transformations.
Keywords: primitive graph, exponent of graph, Hamiltonian cycle.
@article{PDMA_2015_8_a42,
     author = {Y. E. Avezova and V. M. Fomichev},
     title = {Primitiveness conditions for systems of two graphs},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {113--114},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a42/}
}
TY  - JOUR
AU  - Y. E. Avezova
AU  - V. M. Fomichev
TI  - Primitiveness conditions for systems of two graphs
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 113
EP  - 114
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a42/
LA  - ru
ID  - PDMA_2015_8_a42
ER  - 
%0 Journal Article
%A Y. E. Avezova
%A V. M. Fomichev
%T Primitiveness conditions for systems of two graphs
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 113-114
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a42/
%G ru
%F PDMA_2015_8_a42
Y. E. Avezova; V. M. Fomichev. Primitiveness conditions for systems of two graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 113-114. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a42/

[1] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13

[2] Kogos K. G., Fomichev V. M., “O razvetvleniyakh kriptograficheskikh funktsii na preobrazovaniya s zadannym priznakom”, Prikladnaya diskretnaya matematika, 2012, no. 1(15), 50–54