Public-key cryptosystem based on fully homomorphic encryption
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 59-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the practical usage of fully homomorphic encryption. The application of this encryption to constructing a public-key cryptosystem based on the RSA algorithm is shown. An implementation of this cryptosystem demonstrates that all arithmetical calculations over the encrypted data are correct. Also, it proves that the multiplication of ciphertexts doesn't lead to increasing the dimension of the multiplication result.
Keywords: homomorphic encryption, public-key cryptosystem, RSA algorithm.
@article{PDMA_2015_8_a20,
     author = {V. V. Egorova and D. K. Chechulina},
     title = {Public-key cryptosystem based on fully homomorphic encryption},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {59--61},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a20/}
}
TY  - JOUR
AU  - V. V. Egorova
AU  - D. K. Chechulina
TI  - Public-key cryptosystem based on fully homomorphic encryption
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 59
EP  - 61
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a20/
LA  - ru
ID  - PDMA_2015_8_a20
ER  - 
%0 Journal Article
%A V. V. Egorova
%A D. K. Chechulina
%T Public-key cryptosystem based on fully homomorphic encryption
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 59-61
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a20/
%G ru
%F PDMA_2015_8_a20
V. V. Egorova; D. K. Chechulina. Public-key cryptosystem based on fully homomorphic encryption. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 59-61. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a20/

[1] Knuth D., The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley Pub. Co., 1981 | MR | Zbl

[2] Shamir A., “A polynomial time algorithm for breaking the basic Merkle–Hellman cryptosystem”, Adv. Cryptology, 1983, 279–288 | DOI | Zbl