Properties of $p$-ary bent functions that are at minimal distance from each other
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 39-43

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in the case of prime $p$, the minimal Hamming distance between distinct $p$-ary bent functions in $2n$ variables is equal to $p^n$. It is shown that for $p>2$ the number of $p$-ary bent functions being on the minimal distance from a quadratic bent function is equal to $p^n(p^{n-1}+1)\cdots(p+1)(p-1)$.
Keywords: bent function, Hamming distance, quadratic form.
@article{PDMA_2015_8_a15,
     author = {V. N. Potapov},
     title = {Properties of $p$-ary bent functions that are at minimal distance from each other},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {39--43},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - Properties of $p$-ary bent functions that are at minimal distance from each other
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 39
EP  - 43
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/
LA  - ru
ID  - PDMA_2015_8_a15
ER  - 
%0 Journal Article
%A V. N. Potapov
%T Properties of $p$-ary bent functions that are at minimal distance from each other
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 39-43
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/
%G ru
%F PDMA_2015_8_a15
V. N. Potapov. Properties of $p$-ary bent functions that are at minimal distance from each other. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 39-43. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/