Properties of $p$-ary bent functions that are at minimal distance from each other
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 39-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in the case of prime $p$, the minimal Hamming distance between distinct $p$-ary bent functions in $2n$ variables is equal to $p^n$. It is shown that for $p>2$ the number of $p$-ary bent functions being on the minimal distance from a quadratic bent function is equal to $p^n(p^{n-1}+1)\cdots(p+1)(p-1)$.
Keywords: bent function, Hamming distance, quadratic form.
@article{PDMA_2015_8_a15,
     author = {V. N. Potapov},
     title = {Properties of $p$-ary bent functions that are at minimal distance from each other},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {39--43},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - Properties of $p$-ary bent functions that are at minimal distance from each other
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 39
EP  - 43
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/
LA  - ru
ID  - PDMA_2015_8_a15
ER  - 
%0 Journal Article
%A V. N. Potapov
%T Properties of $p$-ary bent functions that are at minimal distance from each other
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 39-43
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/
%G ru
%F PDMA_2015_8_a15
V. N. Potapov. Properties of $p$-ary bent functions that are at minimal distance from each other. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 39-43. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a15/

[1] Tao T., “An uncertainty principle for cyclic groups of prime order”, Math. Res. Lett., 12:1 (2005), 121–127 | DOI | MR | Zbl

[2] Vleduts S. G., Nogin D. Yu., Tsfasman M. A., Algebrogeometricheskie kody. Osnovnye ponyatiya, MTsNMO, M., 2003, 504 pp.

[3] Kumar P. V., Scholtz R. A., Welch L. R., “Generalized bent functions and their properties”, J. Comb. Theory Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[4] Tokareva N. N., “Bent-funktsii i ikh obobscheniya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2009, no. 2, 5–17

[5] Tokareva N. N., “Obobscheniya bent-funktsii. Obzor rabot”, Diskretn. analiz i issled. oper., 17:1 (2010), 34–64 | MR | Zbl

[6] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20

[7] Carlet C., “Two new classes of bent functions”, Advances in Cryptology – EUROCRYPT'93, LNCS, 765, 1994, 77–101 | MR | Zbl

[8] Potapov V. N., “Spektr moschnostei komponent korrelyatsionno-immunnykh funktsii, bent-funktsii, sovershennykh raskrasok i kodov”, Probl. peredachi inform., 48:1 (2012), 54–63 | MR | Zbl

[9] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer Verlag, N.Y., 1989, 485 pp. | MR | Zbl

[10] Kolomeets N. A., “Perechislenie bent-funktsii na minimalnom rasstoyanii ot kvadratichnoi bent-funktsii”, Diskretn. analiz i issled. oper., 19:1 (2012), 41–58 | MR | Zbl

[11] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3, 28–39