On self dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 34-35
Voir la notice de l'article provenant de la source Math-Net.Ru
Here, it is proved that a Boolean function $f$ in $n$ variables is self-dual bent if and only if the Hamming weight of the function $F_y(x)=f(x)\oplus f(y)\oplus x\cdot y$ is equal to $2^{n-1}-2^{n/2-1}$ for any $y\in\mathbb F_2^n$.
Keywords:
Boolean function, bent function, self-dual bent.
@article{PDMA_2015_8_a12,
author = {A. V. Kutsenko},
title = {On self dual bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {34--35},
publisher = {mathdoc},
number = {8},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a12/}
}
A. V. Kutsenko. On self dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 34-35. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a12/