On self dual bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 34-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here, it is proved that a Boolean function $f$ in $n$ variables is self-dual bent if and only if the Hamming weight of the function $F_y(x)=f(x)\oplus f(y)\oplus x\cdot y$ is equal to $2^{n-1}-2^{n/2-1}$ for any $y\in\mathbb F_2^n$.
Keywords: Boolean function, bent function, self-dual bent.
@article{PDMA_2015_8_a12,
     author = {A. V. Kutsenko},
     title = {On self dual bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {34--35},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a12/}
}
TY  - JOUR
AU  - A. V. Kutsenko
TI  - On self dual bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 34
EP  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a12/
LA  - ru
ID  - PDMA_2015_8_a12
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%T On self dual bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 34-35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a12/
%G ru
%F PDMA_2015_8_a12
A. V. Kutsenko. On self dual bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 34-35. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a12/

[1] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self dual bent functions”, Int. J. Inform. Coding Theory, 1:4 (2010), 384–399 | DOI | MR | Zbl

[2] Hou X., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl