On the minimal distance graph connectivity for bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 33-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the set $\mathcal B_{2k}$ of all bent functions in $2k$ variables, the graph $GB_{2k}$ is defined. The vertices in $GB_{2k}$ are all functions in $\mathcal B_{2k}$ and two of them are adjacent if and only if the Hamming distance between them is equal to $2^k$. It is proved that, for $k=1,2,3$, the graph $GB_{2k}$ is connected and, for any $k$, the subgraph of $GB_{2k}$ induced by the subset of all vertices being affine equivalent to Maiorana–McFarland bent functions is also connected.
Keywords: Boolean functions, bent functions, the minimal distance.
@article{PDMA_2015_8_a11,
     author = {N. A. Kolomeec},
     title = {On the minimal distance graph connectivity for bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {33--34},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a11/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - On the minimal distance graph connectivity for bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 33
EP  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a11/
LA  - ru
ID  - PDMA_2015_8_a11
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T On the minimal distance graph connectivity for bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 33-34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a11/
%G ru
%F PDMA_2015_8_a11
N. A. Kolomeec. On the minimal distance graph connectivity for bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 33-34. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a11/

[1] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N. N., Bent Functions: Results and Applications to Cryptography, Acad. Press Elsevier, 2015

[3] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl

[4] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3, 28–39