MacMahon's statistics properties on sets of words
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 6-8
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of MacMahon's statistics of $\mathrm{maj}$ and $\mathrm{inv}$ are considered on three sets of words over $\{1,\dots,n\}$: 1) permutations of degree $n$; 2) all words of length $n$; 3) concave permutations of degree $n$. New recursive descriptions of the generating polynomials of couples $\mathrm{(des,maj)}$ and $\mathrm{(des,inv)}$ are obtained on sets 1 and 3; the corresponding recursive descriptions on the set 2 are only obtained for $\mathrm{(des,maj)}$ and for statistics $\mathrm{inv}$. On the sets 1 and 2, these recursive descriptions are used for another proof of the known MacMahon's theorem about the coincidence of distributions of $\mathrm{maj}$ and $\mathrm{inv}$. On the set 2, the statistics of $\mathrm{fas}$ and $\mathrm{cas}$ are defined as special average values of a symbol in a word, $\mathrm{fas}$ and $\mathrm{des}$ are equally distributed, and the theorem of coincidence of distributions of couples $\mathrm{(fas,maj)}$ and $\mathrm{(fas,inv)}$, and also of couples $\mathrm{(cas,maj)}$ and $\mathrm{(cas,inv)}$ is proved.
Keywords:
MacMahon's statistics, generating polynomial, recursive description, Euler's statistics.
@article{PDMA_2015_8_a0,
author = {L. N. Bondarenko and M. L. Sharapova},
title = {MacMahon's statistics properties on sets of words},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {6--8},
publisher = {mathdoc},
number = {8},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a0/}
}
L. N. Bondarenko; M. L. Sharapova. MacMahon's statistics properties on sets of words. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 6-8. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a0/