MacMahon's statistics properties on sets of words
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 6-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of MacMahon's statistics of $\mathrm{maj}$ and $\mathrm{inv}$ are considered on three sets of words over $\{1,\dots,n\}$: 1) permutations of degree $n$; 2) all words of length $n$; 3) concave permutations of degree $n$. New recursive descriptions of the generating polynomials of couples $\mathrm{(des,maj)}$ and $\mathrm{(des,inv)}$ are obtained on sets 1 and 3; the corresponding recursive descriptions on the set 2 are only obtained for $\mathrm{(des,maj)}$ and for statistics $\mathrm{inv}$. On the sets 1 and 2, these recursive descriptions are used for another proof of the known MacMahon's theorem about the coincidence of distributions of $\mathrm{maj}$ and $\mathrm{inv}$. On the set 2, the statistics of $\mathrm{fas}$ and $\mathrm{cas}$ are defined as special average values of a symbol in a word, $\mathrm{fas}$ and $\mathrm{des}$ are equally distributed, and the theorem of coincidence of distributions of couples $\mathrm{(fas,maj)}$ and $\mathrm{(fas,inv)}$, and also of couples $\mathrm{(cas,maj)}$ and $\mathrm{(cas,inv)}$ is proved.
Keywords: MacMahon's statistics, generating polynomial, recursive description, Euler's statistics.
@article{PDMA_2015_8_a0,
     author = {L. N. Bondarenko and M. L. Sharapova},
     title = {MacMahon's statistics properties on sets of words},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {6--8},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a0/}
}
TY  - JOUR
AU  - L. N. Bondarenko
AU  - M. L. Sharapova
TI  - MacMahon's statistics properties on sets of words
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 6
EP  - 8
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a0/
LA  - ru
ID  - PDMA_2015_8_a0
ER  - 
%0 Journal Article
%A L. N. Bondarenko
%A M. L. Sharapova
%T MacMahon's statistics properties on sets of words
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 6-8
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a0/
%G ru
%F PDMA_2015_8_a0
L. N. Bondarenko; M. L. Sharapova. MacMahon's statistics properties on sets of words. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 6-8. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a0/

[1] Foata A., “Raspredeleniya tipa Eilera i Mak-Magona na gruppe perestanovok”, Problemy kombinatornogo analiza, Mir, M., 1980, 120–141

[2] Endryus G., Teoriya razbienii, Nauka, M., 1982, 256 pp. | MR

[3] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990, 504 pp. | MR

[4] Chow C., “A recurrence relation for the “inv” analogue of $q$-Eulerian polynomials”, Electronic J. Combinatorics, 17 (2010), No 22 | MR

[5] Bondarenko L. N., Sharapova M. L., “Statistiki spuskov i srednikh na mnozhestvakh slov”, Problemy teoreticheskoi kibernetiki, Materialy XVII Mezhdunar. konf. (Kazan, 18–20 iyunya 2014 g.), Otechestvo, Kazan, 2014, 63–65