An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 22-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables is obtained. The bound is reached only for quadratic bent functions. The notion of completely affine decomposable Boolean function is introduced. It is proven that only affine and quadratic Boolean functions can be completely affine decomposable.
Keywords: Boolean functions, bent functions, quadratic bent functions.
@article{PDMA_2014_7_a7,
     author = {N. A. Kolomeec},
     title = {An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {22--24},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 22
EP  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/
LA  - ru
ID  - PDMA_2014_7_a7
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 22-24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/
%G ru
%F PDMA_2014_7_a7
N. A. Kolomeec. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 22-24. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/

[1] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012

[2] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, 2011

[3] Buryakov M. L., Algebraicheskie, kombinatornye i kriptograficheskie svoistva parametrov affinnykh ogranichenii bulevykh funktsii, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2007

[4] Logachev O. A., “O znacheniyakh urovnya affinnosti dlya pochti vsekh bulevykh funktsii”, Prikladnaya diskretnaya matematika, 2010, no. 3, 17–21

[5] Carlet C., “Two new classes of bent functions”, EUROCRYPT' 93, LNCS, 765, 1994, 77–101 | MR | Zbl

[6] Charpin P., “Normal Boolean functions”, J. Complexity, 20 (2004), 245–265 | DOI | MR | Zbl

[7] Dobbertin H., “Construction of bent functions and balanced Boolean functions with high nonlinearity”, LNCS, 1008, 1994, 61–74

[8] Kolomeets N. A., “Ob affinnosti bulevykh funktsii na podprostranstvakh i ikh sdvigakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 15–16

[9] Kolomeets N. A., Pavlov A. V., “Svoistvo bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20