An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 22-24

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables is obtained. The bound is reached only for quadratic bent functions. The notion of completely affine decomposable Boolean function is introduced. It is proven that only affine and quadratic Boolean functions can be completely affine decomposable.
Keywords: Boolean functions, bent functions, quadratic bent functions.
@article{PDMA_2014_7_a7,
     author = {N. A. Kolomeec},
     title = {An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {22--24},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 22
EP  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/
LA  - ru
ID  - PDMA_2014_7_a7
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 22-24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/
%G ru
%F PDMA_2014_7_a7
N. A. Kolomeec. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 22-24. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/