Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2014_7_a7, author = {N. A. Kolomeec}, title = {An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {22--24}, publisher = {mathdoc}, number = {7}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/} }
TY - JOUR AU - N. A. Kolomeec TI - An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2014 SP - 22 EP - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/ LA - ru ID - PDMA_2014_7_a7 ER -
%0 Journal Article %A N. A. Kolomeec %T An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables %J Prikladnaya Diskretnaya Matematika. Supplement %D 2014 %P 22-24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/ %G ru %F PDMA_2014_7_a7
N. A. Kolomeec. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 22-24. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a7/