Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2014_7_a57, author = {V. N. Salii}, title = {The {Sperner} property for polygonal graphs}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {135--137}, publisher = {mathdoc}, number = {7}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a57/} }
V. N. Salii. The Sperner property for polygonal graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 135-137. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a57/
[1] Sperner E., “Ein Satz uber Untermengen einer endlichen Menge”, Math. Zeitschrift., 27:1 (1928), 544–548 | DOI | MR | Zbl
[2] Meshalkin L. D., “Obobschenie teoremy Shpernera o chisle podmnozhestv konechnogo mnozhestva”, Teoriya veroyatnostei i eë primeneniya, 8:2 (1963), 219–220 | Zbl
[3] Stanley E. P., “Weyl groups, the hard Lefschetz theorem and the Sperner property”, SIAM J. Alg. Discr. Math., 1:2 (1980), 168–184 | DOI | MR | Zbl
[4] Wang J., “Proof of a conjecture on the Sperner property of the subgroup lattice of an abelian $p$-group”, Annals Comb., 2:1 (1999), 85–101 | DOI | MR
[5] Jacobson M. S., Kezdy A. E., Seif S., “The poset of connected induced subgraphs of a graph need not be Sperner”, Order, 12:3 (1995), 315–318 | DOI | MR | Zbl
[6] Maeno T., Numata Y., “Sperner property, matroids and finite-dimensional Gorenstein algebras”, Contemp. Math., 280:1 (2012), 73–83 | DOI | MR
[7] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR | Zbl
[8] Salii V. N., “Uporyadochennoe mnozhestvo svyaznykh chastei mnogougolnogo grafa”, Izv. Sarat. un-ta. Nov. cer. Ser. Matematika. Mekhanika. Informatika, 13:2, ch. 2 (2013), 44–51