Algorithm for constructing T-irreducible extension of polygonal digraphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 124-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Directed graphs are mathematical models of discrete systems. T-irreducible extensions are widely used in cryptography and diagnosis of discrete systems. A polygonal graph is a digraph obtained from a circuit by some orientation of its edges. An algorithm is proposed to construct a T-irreducible extension for a polygonal graph. Correctness of the algorithm is proved.
Keywords: polygonal graph, fault tolerance, T-irreducible extension.
@article{PDMA_2014_7_a52,
     author = {A. V. Gavrikov},
     title = {Algorithm for constructing {T-irreducible} extension of polygonal digraphs},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {124--126},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a52/}
}
TY  - JOUR
AU  - A. V. Gavrikov
TI  - Algorithm for constructing T-irreducible extension of polygonal digraphs
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 124
EP  - 126
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a52/
LA  - ru
ID  - PDMA_2014_7_a52
ER  - 
%0 Journal Article
%A A. V. Gavrikov
%T Algorithm for constructing T-irreducible extension of polygonal digraphs
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 124-126
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a52/
%G ru
%F PDMA_2014_7_a52
A. V. Gavrikov. Algorithm for constructing T-irreducible extension of polygonal digraphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 124-126. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a52/

[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997, 326 pp. | MR | Zbl

[2] Kurnosova S. G., “$T$-neprivodimye rasshireniya dlya nekotorykh klassov grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, Sb. nauch. tr., eds. prof. A. A. Sytnik, Izd-vo Sarat. un-ta, Saratov, 2004, 113–125

[3] Hayes J. P., “A graph model for fault-tolerant computing systems”, IEEE Trans. Comput., C-26:9 (1976), 875–884 | DOI | MR

[4] Abrosimov M. B., “Nekotorye voprosy o minimalnykh rasshireniyakh grafov”, Izvestiya Saratovskogo universiteta. Ser. Matematika. Mekhanika. Informatika, 6:1/2 (2006), 86–91

[5] Salii V. N., “Dokazatelstva s nulevym razglasheniem v zadachakh o rasshireniyakh grafov”, Vestnik Tomskogo gosudarstvennogo universiteta. Prilozhenie, 2003, no. 6, 63–65

[6] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl

[7] Salii V. N., “Uporyadochennoe mnozhestvo svyaznykh chastei mnogougolnogo grafa”, Izvestiya Saratovskogo universiteta, 13:2 (2013), 44–51