Forming indicators vectors for neural networks training to detect attacks on web applications
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 96-99

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach for choosing the most suitable indicators to detect various types of attacks on web applications is described. A method for forming vectors of indicators for classes of attacks is proposed. The method reduces the amount of required neural networks and accelerates the process of attack detection.
Keywords: intrusion detection, misuse detection, neural network, vector of indicators, web application.
Mots-clés : intrusion classes
@article{PDMA_2014_7_a41,
     author = {S. N. Sorokin},
     title = {Forming indicators vectors for neural networks training to detect attacks on web applications},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {96--99},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a41/}
}
TY  - JOUR
AU  - S. N. Sorokin
TI  - Forming indicators vectors for neural networks training to detect attacks on web applications
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 96
EP  - 99
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a41/
LA  - ru
ID  - PDMA_2014_7_a41
ER  - 
%0 Journal Article
%A S. N. Sorokin
%T Forming indicators vectors for neural networks training to detect attacks on web applications
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 96-99
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a41/
%G ru
%F PDMA_2014_7_a41
S. N. Sorokin. Forming indicators vectors for neural networks training to detect attacks on web applications. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 96-99. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a41/