Model of complication function for generator of pseudorandom sequences over the field~$\mathrm{GF}(2)$
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 67-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complication model for pseudorandom sequences (PRS) over $\mathrm{GF}(2)$ is proposed. The complication function in the model is represented by the system of linear bijective transformations of bit pairs being next in turn in the sequence. Transformations in the system can vary from time to time making possible to generate a great ensemble of complicated PRS.
Keywords: generator, pseudorandom sequence, the linear bijective transformation.
@article{PDMA_2014_7_a28,
     author = {V. M. Zakharov and R. V. Zelinsky and S. V. Shalagin},
     title = {Model of complication function for generator of pseudorandom sequences over the field~$\mathrm{GF}(2)$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {67--68},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a28/}
}
TY  - JOUR
AU  - V. M. Zakharov
AU  - R. V. Zelinsky
AU  - S. V. Shalagin
TI  - Model of complication function for generator of pseudorandom sequences over the field~$\mathrm{GF}(2)$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 67
EP  - 68
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a28/
LA  - ru
ID  - PDMA_2014_7_a28
ER  - 
%0 Journal Article
%A V. M. Zakharov
%A R. V. Zelinsky
%A S. V. Shalagin
%T Model of complication function for generator of pseudorandom sequences over the field~$\mathrm{GF}(2)$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 67-68
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a28/
%G ru
%F PDMA_2014_7_a28
V. M. Zakharov; R. V. Zelinsky; S. V. Shalagin. Model of complication function for generator of pseudorandom sequences over the field~$\mathrm{GF}(2)$. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 67-68. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a28/

[1] Moldovyan A. A., Moldovyan N. A., Guts N. D., Izotov B. V., Kriptografiya: skorostnye shifry, BKhV-Peterburg, SPb., 2002, 496 pp.

[2] Kolpakov A. V., Metody i algoritmy lineinykh i affinnykh preobrazovanii dlya modeli binarnykh diagramm reshenii, Dis. $\dots$ kand. tekhn. nauk, Kazan, 2004