Every cubic Boolean function in~8 variables is the sum of not more than~4 bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 38-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any cubic Boolean function in 8 variables is the sum of not more than 4 bent functions in 8 variables.
Keywords: bent function, cubic Boolean function
Mots-clés : affine classification.
@article{PDMA_2014_7_a15,
     author = {N. N. Tokareva},
     title = {Every cubic {Boolean} function in~8 variables is the sum of not more than~4 bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {38--39},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - Every cubic Boolean function in~8 variables is the sum of not more than~4 bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 38
EP  - 39
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/
LA  - en
ID  - PDMA_2014_7_a15
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T Every cubic Boolean function in~8 variables is the sum of not more than~4 bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 38-39
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/
%G en
%F PDMA_2014_7_a15
N. N. Tokareva. Every cubic Boolean function in~8 variables is the sum of not more than~4 bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 38-39. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/

[1] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Advances Math. Comm. (AMC), 5:4 (2011), 609–621 | DOI | MR | Zbl

[2] Qu L., Li C., When a Boolean function can be expressed as the sum of two bent functions, Cryptology ePrint Archive 2014/048

[3] Logachev O. A., Sal'nikov A. A., Smyshlyaev S. V., Yashenko V. V., Boolean functions in coding theory and cryptology, Moscow center for the uninter. math. education, 2012, 584 pp.