Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 38-39
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that any cubic Boolean function in 8 variables is the sum of not more than 4 bent functions in 8 variables.
Keywords:
bent function, cubic Boolean function
Mots-clés : affine classification.
Mots-clés : affine classification.
@article{PDMA_2014_7_a15,
author = {N. N. Tokareva},
title = {Every cubic {Boolean} function in~8 variables is the sum of not more than~4 bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {38--39},
year = {2014},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/}
}
N. N. Tokareva. Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 38-39. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/
[1] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Advances Math. Comm. (AMC), 5:4 (2011), 609–621 | DOI | MR | Zbl
[2] Qu L., Li C., When a Boolean function can be expressed as the sum of two bent functions, Cryptology ePrint Archive 2014/048
[3] Logachev O. A., Sal'nikov A. A., Smyshlyaev S. V., Yashenko V. V., Boolean functions in coding theory and cryptology, Moscow center for the uninter. math. education, 2012, 584 pp.