Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2014_7_a15, author = {N. N. Tokareva}, title = {Every cubic {Boolean} function in~8 variables is the sum of not more than~4 bent functions}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {38--39}, publisher = {mathdoc}, number = {7}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/} }
TY - JOUR AU - N. N. Tokareva TI - Every cubic Boolean function in~8 variables is the sum of not more than~4 bent functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2014 SP - 38 EP - 39 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/ LA - en ID - PDMA_2014_7_a15 ER -
N. N. Tokareva. Every cubic Boolean function in~8 variables is the sum of not more than~4 bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 38-39. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a15/
[1] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Advances Math. Comm. (AMC), 5:4 (2011), 609–621 | DOI | MR | Zbl
[2] Qu L., Li C., When a Boolean function can be expressed as the sum of two bent functions, Cryptology ePrint Archive 2014/048
[3] Logachev O. A., Sal'nikov A. A., Smyshlyaev S. V., Yashenko V. V., Boolean functions in coding theory and cryptology, Moscow center for the uninter. math. education, 2012, 584 pp.