Some properties of $q$-ary bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 33-34
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F$ be a function from a finite field $Q$ to a finite field $P$. Here, both fields are of characteristic 2, $|P|=q\geq2$ and $Q$ is the expansion of the field $P$. The period of $F$ is defined as the period of the sequence $u(i)= F(\theta^i)$ ($\theta$ – primitive element of $Q$, $i\in\mathbb N_0$). Besides, let $N_a(F)$ be a number of solutions in $Q$ of equation $F(x)=a$, $a\in P$. Consider $F$ to be a bent function. In this case, it is shown that if the period of $F$ is not maximal one, then exact values of $N_a(F)$, $a\in P$, can be derived. Moreover, if values of $N_a(F)$, $a\in P$, are of a special form, then the value of the period of $F$ is divisible by some exact value.
Keywords:
bent functions, period of a function, equations over finite fields.
@article{PDMA_2014_7_a12,
author = {V. A. Shishkin},
title = {Some properties of $q$-ary bent functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {33--34},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a12/}
}
V. A. Shishkin. Some properties of $q$-ary bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 33-34. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a12/
[1] Kuzmin A. S., Markov V. T., Nechaev A. A., Shishkin V. A., Shishkov A. B., “Bent-funktsii i giperbent-funktsii nad polem iz $2^l$ elementov”, Problemy peredachi informatsii, 44:1 (2008), 15–37 | MR | Zbl
[2] Tokareva N. N., “Obobscheniya bent-funktsii. Obzor rabot”, Diskretn. analiz i issled. operatsii, 17:1 (2010), 34–64 | MR | Zbl
[3] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy”, Diskretnaya matematika, 14:1 (2002), 99–113 | DOI | MR | Zbl
[4] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10, 2007, 97–122